Full-switching FSF-type superconducting spin-triplet magnetic random access memory element
Închide
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
768 0
SM ISO690:2012
LENK, D., MORARI, Roman, ZDRAVKOV, Vladimir, ULLRICH, Aladin, KHAYDUKOV, Yu N., OBERMEIER, Guenter, MULLER, Claus, SIDORENKO, Anatolie, KRUG VON NIDDA, Hans Albrecht, HÖRN, Siegfried, TAGIROV, Lenar, TIDECKS, Reinhard. Full-switching FSF-type superconducting spin-triplet magnetic random access memory element. In: Physical Review B, 2017, vol. 96, p. 0. ISSN 2469-9950. DOI: https://doi.org/10.1103/PhysRevB.96.184521
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Physical Review B
Volumul 96 / 2017 / ISSN 2469-9950 /ISSNe 2469-9969

Full-switching FSF-type superconducting spin-triplet magnetic random access memory element

DOI:https://doi.org/10.1103/PhysRevB.96.184521

Pag. 0-0

Lenk D.1, Morari Roman12, Zdravkov Vladimir12, Ullrich Aladin1, Khaydukov Yu N.3, Obermeier Guenter1, Muller Claus1, Sidorenko Anatolie2, Krug Von Nidda Hans Albrecht1, Hörn Siegfried1, Tagirov Lenar145, Tidecks Reinhard1
 
1 University of Augsburg,
2 Institute of the Electronic Engineering and Nanotechnologies "D. Ghitu" of the Academy of Sciences of Moldova,
3 Max Planck Institute for Solid State Research,
4 Kazan State University,
5 Zavoisky Physical Technical Institute of the Russian Academy of Sciences
 
 
Disponibil în IBN: 5 februarie 2018


Rezumat

In the present work a superconducting Co/CoOx/Cu41Ni59/Nb/Cu41Ni59 nanoscale thin film heterostructure is investigated, which exhibits a superconducting transition temperature, Tc, depending on the history of magnetic field applied parallel to the film plane. In more detail, around zero applied field, Tc is lower when the field is changed from negative to positive polarity (with respect to the cooling field), compared to the opposite case. We interpret this finding as the result of the generation of the odd-in-frequency triplet component of superconductivity arising at noncollinear orientation of the magnetizations in the Cu41Ni59 layer adjacent to the CoOx layer. This interpretation is supported by superconducting quantum interference device magnetometry, which revealed a correlation between details of the magnetic structure and the observed superconducting spin-valve effects. Readout of information is possible at zero applied field and, thus, no permanent field is required to stabilize both states. Consequently, this system represents a superconducting magnetic random access memory element for superconducting electronics. By applying increased transport currents, the system can be driven to the full switching mode between the completely superconducting and the normal state.

Cuvinte-cheie
Josephson Junctions, superconductivity, Proximity effect

DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xmlns='http://datacite.org/schema/kernel-3' xsi:schemaLocation='http://datacite.org/schema/kernel-3 http://schema.datacite.org/meta/kernel-3/metadata.xsd'>
<identifier identifierType='DOI'>10.1103/PhysRevB.96.184521</identifier>
<creators>
<creator>
<creatorName>Lenk, D.</creatorName>
<affiliation>Universitatea Augsburg, Germania</affiliation>
</creator>
<creator>
<creatorName>Morari, R.A.</creatorName>
<affiliation>Universitatea Augsburg, Germania</affiliation>
</creator>
<creator>
<creatorName>Zdravkov, V.I.</creatorName>
<affiliation>Universitatea Augsburg, Germania</affiliation>
</creator>
<creator>
<creatorName>Ullrich, A.</creatorName>
<affiliation>Universitatea Augsburg, Germania</affiliation>
</creator>
<creator>
<creatorName>Khaydukov, Y.</creatorName>
<affiliation>Max Planck Institute for Solid State Research, Germania</affiliation>
</creator>
<creator>
<creatorName>Obermeier, G.</creatorName>
<affiliation>Universitatea Augsburg, Germania</affiliation>
</creator>
<creator>
<creatorName>Muller, C.</creatorName>
<affiliation>Universitatea Augsburg, Germania</affiliation>
</creator>
<creator>
<creatorName>Sidorenko, A.S.</creatorName>
<affiliation>Institutul de Inginerie Electronică şi Nanotehnologii "D. Ghiţu" al AŞM, Moldova, Republica</affiliation>
</creator>
<creator>
<creatorName>Krug Von Nidda, H.</creatorName>
<affiliation>Universitatea Augsburg, Germania</affiliation>
</creator>
<creator>
<creatorName>Hörn, S.R.</creatorName>
<affiliation>Universitatea Augsburg, Germania</affiliation>
</creator>
<creator>
<creatorName>Tagirov, L.</creatorName>
<affiliation>Universitatea Augsburg, Germania</affiliation>
</creator>
<creator>
<creatorName>Tidecks, R.</creatorName>
<affiliation>Universitatea Augsburg, Germania</affiliation>
</creator>
</creators>
<titles>
<title xml:lang='en'>Full-switching FSF-type superconducting spin-triplet magnetic random access memory element</title>
</titles>
<publisher>Instrumentul Bibliometric National</publisher>
<publicationYear>2017</publicationYear>
<relatedIdentifier relatedIdentifierType='ISSN' relationType='IsPartOf'>2469-9950</relatedIdentifier>
<subjects>
<subject>Josephson Junctions</subject>
<subject>superconductivity</subject>
<subject>Proximity effect</subject>
</subjects>
<dates>
<date dateType='Issued'>2017-11-27</date>
</dates>
<resourceType resourceTypeGeneral='Text'>Journal article</resourceType>
<descriptions>
<description xml:lang='en' descriptionType='Abstract'><p>In the present work a superconducting Co/CoOx/Cu41Ni59/Nb/Cu41Ni59 nanoscale thin film heterostructure is investigated, which exhibits a superconducting transition temperature, Tc, depending on the history of magnetic field applied parallel to the film plane. In more detail, around zero applied field, Tc is lower when the field is changed from negative to positive polarity (with respect to the cooling field), compared to the opposite case. We interpret this finding as the result of the generation of the odd-in-frequency triplet component of superconductivity arising at noncollinear orientation of the magnetizations in the Cu41Ni59 layer adjacent to the CoOx layer. This interpretation is supported by superconducting quantum interference device magnetometry, which revealed a correlation between details of the magnetic structure and the observed superconducting spin-valve effects. Readout of information is possible at zero applied field and, thus, no permanent field is required to stabilize both states. Consequently, this system represents a superconducting magnetic random access memory element for superconducting electronics. By applying increased transport currents, the system can be driven to the full switching mode between the completely superconducting and the normal state.</p></description>
</descriptions>
<formats>
<format>uri</format>
</formats>
</resource>