Global configurations of singularities for quadratic differential systems with total finite multiplicity three and at most two real singularities
Închide
Articolul precedent
Articolul urmator
1105 0
SM ISO690:2012
ARTES, Joan, LLIBRE, Jaume, SCHLOMIUK, Dana, VULPE, Nicolae. Global configurations of singularities for quadratic differential systems with total finite multiplicity three and at most two real singularities. In: Conference of Mathematical Society of the Republic of Moldova, 19-23 august 2014, Chișinău. Chișinău: "VALINEX" SRL, 2014, 3, pp. 221-224. ISBN 978-9975-68-244-2.
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Conference of Mathematical Society of the Republic of Moldova
3, 2014
Conferința "Conference of Mathematical Society of the Republic of Moldova"
Chișinău, Moldova, 19-23 august 2014

Global configurations of singularities for quadratic differential systems with total finite multiplicity three and at most two real singularities

Pag. 221-224

Artes Joan1, Llibre Jaume1, Schlomiuk Dana2, Vulpe Nicolae3
 
1 Universitat Autònoma de Barcelona,
2 Université de Montréal,
3 Institute of Mathematics and Computer Science ASM
 
 
 
Disponibil în IBN: 9 octombrie 2017


Rezumat

In this work we consider the problem of classifying all configurations of singularities, both finite and infinite of quadratic differential systems, with respect to the geometric equivalence relation defined in [2]. This relation is finer than the topological equivalence relation which does not distinguish between a focus and a node or between a strong and a weak focus or between foci of different orders. In this article we continue the work initiated in [3] and obtain the geometric classification of singularities, finite and infinite, for the subclass of quadratic differential systems possessing finite singularities of total multiplicity three and at most two real singularities.

Cuvinte-cheie
Quadratic vector fields, infinite and finite singularities, configuration of singularities, geometric equivalence relation

Cerif XML Export

<?xml version='1.0' encoding='utf-8'?>
<CERIF xmlns='urn:xmlns:org:eurocris:cerif-1.5-1' xsi:schemaLocation='urn:xmlns:org:eurocris:cerif-1.5-1 http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.5/CERIF_1.5_1.xsd' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' release='1.5' date='2012-10-07' sourceDatabase='Output Profile'>
<cfResPubl>
<cfResPublId>ibn-ResPubl-54807</cfResPublId>
<cfResPublDate>2014</cfResPublDate>
<cfVol>3</cfVol>
<cfStartPage>221</cfStartPage>
<cfISBN>978-9975-68-244-2</cfISBN>
<cfURI>https://ibn.idsi.md/ro/vizualizare_articol/54807</cfURI>
<cfTitle cfLangCode='EN' cfTrans='o'>Global configurations of singularities for quadratic differential systems with total finite multiplicity three and at most two real singularities</cfTitle>
<cfKeyw cfLangCode='EN' cfTrans='o'>Quadratic vector fields; infinite and finite singularities; configuration of singularities; geometric equivalence relation</cfKeyw>
<cfAbstr cfLangCode='EN' cfTrans='o'>In this work we consider the problem of classifying all configurations of singularities, both finite and infinite of quadratic differential systems, with respect to the geometric equivalence relation defined in [2]. This relation is finer than the topological equivalence relation which does not distinguish between a focus and a node or between a strong and a weak focus or between foci of different orders. In this article we continue the work initiated in [3] and obtain the geometric classification of singularities, finite and infinite, for the subclass of quadratic differential systems possessing finite singularities of total multiplicity three and at most two real singularities. </cfAbstr>
<cfResPubl_Class>
<cfClassId>eda2d9e9-34c5-11e1-b86c-0800200c9a66</cfClassId>
<cfClassSchemeId>759af938-34ae-11e1-b86c-0800200c9a66</cfClassSchemeId>
<cfStartDate>2014T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfResPubl_Class>
<cfClassId>e601872f-4b7e-4d88-929f-7df027b226c9</cfClassId>
<cfClassSchemeId>40e90e2f-446d-460a-98e5-5dce57550c48</cfClassSchemeId>
<cfStartDate>2014T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfPers_ResPubl>
<cfPersId>ibn-person-14925</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2014T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-14926</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2014T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-14974</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2014T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-657</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2014T24:00:00</cfStartDate>
</cfPers_ResPubl>
</cfResPubl>
<cfPers>
<cfPersId>ibn-Pers-14925</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-14925-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2014T24:00:00</cfStartDate>
<cfFamilyNames>Artes</cfFamilyNames>
<cfFirstNames>Joan</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-14926</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-14926-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2014T24:00:00</cfStartDate>
<cfFamilyNames>Llibre</cfFamilyNames>
<cfFirstNames>Jaume</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-14974</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-14974-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2014T24:00:00</cfStartDate>
<cfFamilyNames>Schlomiuk</cfFamilyNames>
<cfFirstNames>Dana</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-657</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-657-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2014T24:00:00</cfStartDate>
<cfFamilyNames>Vulpe</cfFamilyNames>
<cfFirstNames>Nicolae</cfFirstNames>
</cfPersName_Pers>
</cfPers>
</CERIF>