The topological quasigroups with multiple identities
Închide
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
284 3
Ultima descărcare din IBN:
2017-12-25 15:25
SM ISO690:2012
CHOBAN, Mitrofan; CHIRIAC, Liubomir. The topological quasigroups with multiple identities. In: Quasigroups and Related Systems. 2002, nr. 2(9), pp. 19-31. ISSN 1561-2848.
EXPORT metadate:
Google Scholar
Crossref
CERIF
BibTeX
DataCite
Dublin Core
Quasigroups and Related Systems
Numărul 2(9) / 2002 / ISSN 1561-2848

The topological quasigroups with multiple identities

Pag. 19-31

Choban Mitrofan, Chiriac Liubomir
 
Moldova Tiraspol State University
 
Disponibil în IBN: 10 mai 2016


Rezumat

In this article we describe the topological quasigroups with (n;m)-identities, which are obtained by using isotopies of topological groups. Such quasigroups are called the (n;m)homogeneous quasigroups. Our main goal is to extend some a_rmations of the theory of topological groups on the class of topological (n;m)-homogeneous quasigroups.

Cerif XML Export

<?xml version='1.0' encoding='utf-8'?>
<CERIF xmlns='urn:xmlns:org:eurocris:cerif-1.5-1' xsi:schemaLocation='urn:xmlns:org:eurocris:cerif-1.5-1 http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.5/CERIF_1.5_1.xsd' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' release='1.5' date='2012-10-07' sourceDatabase='Output Profile'>
<cfResPubl>
<cfResPublId>ibn-ResPubl-44078</cfResPublId>
<cfResPublDate>2002-01-04</cfResPublDate>
<cfVol>9</cfVol>
<cfIssue>2</cfIssue>
<cfStartPage>19</cfStartPage>
<cfISSN>1561-2848</cfISSN>
<cfURI>https://ibn.idsi.md/ro/vizualizare_articol/44078</cfURI>
<cfTitle cfLangCode='EN' cfTrans='o'>The topological quasigroups with multiple identities</cfTitle>
<cfAbstr cfLangCode='EN' cfTrans='o'>In this article we describe the topological quasigroups with (n;m)-identities, which are obtained by using isotopies of topological groups. Such quasigroups are called the (n;m)homogeneous quasigroups. Our main goal is to extend some a_rmations of the theory of topological groups on the class of topological (n;m)-homogeneous quasigroups. </cfAbstr>
<cfResPubl_Class>
<cfClassId>eda2d9e9-34c5-11e1-b86c-0800200c9a66</cfClassId>
<cfClassSchemeId>759af938-34ae-11e1-b86c-0800200c9a66</cfClassSchemeId>
<cfStartDate>2002-01-04T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfResPubl_Class>
<cfClassId>e601872f-4b7e-4d88-929f-7df027b226c9</cfClassId>
<cfClassSchemeId>40e90e2f-446d-460a-98e5-5dce57550c48</cfClassSchemeId>
<cfStartDate>2002-01-04T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfPers_ResPubl>
<cfPersId>ibn-person-52</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2002-01-04T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-715</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2002-01-04T24:00:00</cfStartDate>
</cfPers_ResPubl>
</cfResPubl>
<cfPers>
<cfPersId>ibn-Pers-52</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-52-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2002-01-04T24:00:00</cfStartDate>
<cfFamilyNames>Choban</cfFamilyNames>
<cfFirstNames>Mitrofan</cfFirstNames>
<cfFamilyNames>Чобан</cfFamilyNames>
<cfFirstNames>Митрофан</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-715</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-715-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2002-01-04T24:00:00</cfStartDate>
<cfFamilyNames>Кирияк</cfFamilyNames>
<cfFirstNames>Любомир</cfFirstNames>
</cfPersName_Pers>
</cfPers>
</CERIF>