Conţinutul numărului revistei |
Articolul precedent |
Articolul urmator |
896 2 |
Ultima descărcare din IBN: 2016-03-28 13:35 |
Căutarea după subiecte similare conform CZU |
519.217 (13) |
Probabilitate. Statistică matematică (81) |
SM ISO690:2012 LAZARI, Alexandru. Determining the Optimal Evolution Time for Markov Processes with Final Sequence of States . In: Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2015, nr. 1(77), pp. 115-126. ISSN 1024-7696. |
EXPORT metadate: Google Scholar Crossref CERIF DataCite Dublin Core |
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica | ||||||||
Numărul 1(77) / 2015 / ISSN 1024-7696 /ISSNe 2587-4322 | ||||||||
|
||||||||
CZU: 519.217 | ||||||||
Pag. 115-126 | ||||||||
|
||||||||
Descarcă PDF | ||||||||
Rezumat | ||||||||
This paper describes a class of dynamical stochastic systems that re-
presents an extension of classical Markov decision processes. The Markov stochastic
systems with given final sequence of states and unitary transition time, over a finite or
infinite state space, are studied. Such dynamical system stops its evolution as soon as
given sequence of states in given order is reached. The evolution time of the stochastic
system with fixed final sequence of states depends on initial distribution of the states
and probability transition matrix. The considered class of processes represents a ge-
neralization of zero-order Markov processes, studied in [3]. We are seeking for the
optimal initial distribution and optimal probability transition matrix that provide the
minimal evolution time for the dynamical system. We show that this problem can be
solved using the signomial and geometric programming approaches. |
||||||||
Cuvinte-cheie Markov process, Final Sequence of States, Evolution Time, Geometric Programming, Signomial Programming, Posynomial Function. |
||||||||
|