Note about the upper chromatic number of mixed hypertrees
Închide
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
663 2
Ultima descărcare din IBN:
2017-04-29 14:30
Căutarea după subiecte
similare conform CZU
510.5+519.179.1+519.71 (1)
Considerații fundamentale și generale ale matematicii (31)
Analiză combinatorică. Teoria grafurilor (100)
Cibernetică matematică (85)
SM ISO690:2012
ROBLEE, Kenneth; VOLOSHIN, Vitaly. Note about the upper chromatic number of mixed hypertrees. In: Computer Science Journal of Moldova. 2005, nr. 2(38), pp. 131-135. ISSN 1561-4042.
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Computer Science Journal of Moldova
Numărul 2(38) / 2005 / ISSN 1561-4042

Note about the upper chromatic number of mixed hypertrees
CZU: 510.5+519.179.1+519.71

Pag. 131-135

Roblee Kenneth, Voloshin Vitaly
 
Troy University
 
Disponibil în IBN: 30 noiembrie 2013


Rezumat

A mixed hypergraph is a triple H = (X; C;D), where X is the vertex set and each of C, D is a family of subsets of X, the C-edges and D-edges, respectively. A proper k-coloring of H is a mapping c : X ! [k] such that each C-edge has two vertices with a common color and each D-edge has two vertices with distinct colors. Upper chromatic number is the maximum number of colors that can be used in a proper coloring. A mixed hypergraph H is called a mixed hypertree if there exists a host tree on the vertex set X such that every edge (C- or D-) induces a connected subtree of this tree. We show that if a mixed hypertree can be decomposed into interval mixed hypergraphs then the upper chromatic number can be computed using the same formula.