An Automatic Proof of Euler’s Formula
Închide
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
680 4
Ultima descărcare din IBN:
2017-04-29 14:57
Căutarea după subiecte
similare conform CZU
519.62:517.93 (1)
Matematică computațională. Analiză numerică. Programarea calculatoarelor (109)
Ecuații diferențiale. Ecuații integrale. Alte ecuații funcționale. Diferențe finite. Calculul variațional. Analiză funcțională (178)
SM ISO690:2012
ZHANG, Jun. An Automatic Proof of Euler’s Formula. In: Computer Science Journal of Moldova. 2005, nr. 1(37), pp. 3-8. ISSN 1561-4042.
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Computer Science Journal of Moldova
Numărul 1(37) / 2005 / ISSN 1561-4042

An Automatic Proof of Euler’s Formula
CZU: 519.62:517.93

Pag. 3-8

Zhang Jun
 
Troy University
 
Disponibil în IBN: 4 decembrie 2013


Rezumat

In this information age, everything is digitalized. The encoding of functions and the automatic proof of functions are important. This paper will discuss the automatic calculation for Taylor expansion coefficients, as an example, it can be applied to prove Euler’s formula automatically.

Cuvinte-cheie
function,

coefficient, automatic proof

Cerif XML Export

<?xml version='1.0' encoding='utf-8'?>
<CERIF xmlns='urn:xmlns:org:eurocris:cerif-1.5-1' xsi:schemaLocation='urn:xmlns:org:eurocris:cerif-1.5-1 http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.5/CERIF_1.5_1.xsd' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' release='1.5' date='2012-10-07' sourceDatabase='Output Profile'>
<cfResPubl>
<cfResPublId>ibn-ResPubl-2161</cfResPublId>
<cfResPublDate>2005-06-03</cfResPublDate>
<cfVol>37</cfVol>
<cfIssue>1</cfIssue>
<cfStartPage>3</cfStartPage>
<cfISSN>1561-4042</cfISSN>
<cfURI>https://ibn.idsi.md/ro/vizualizare_articol/2161</cfURI>
<cfTitle cfLangCode='EN' cfTrans='o'>An Automatic Proof of Euler’s Formula</cfTitle>
<cfKeyw cfLangCode='EN' cfTrans='o'>function; coefficient; automatic proof</cfKeyw>
<cfAbstr cfLangCode='EN' cfTrans='o'>In this information age, everything is digitalized. The encoding of functions and the automatic proof of functions are important. This paper will discuss the automatic calculation for Taylor
 expansion coefficients, as an example, it can be applied to prove

Euler’s formula automatically.</cfAbstr>
<cfResPubl_Class>
<cfClassId>eda2d9e9-34c5-11e1-b86c-0800200c9a66</cfClassId>
<cfClassSchemeId>759af938-34ae-11e1-b86c-0800200c9a66</cfClassSchemeId>
<cfStartDate>2005-06-03T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfResPubl_Class>
<cfClassId>e601872f-4b7e-4d88-929f-7df027b226c9</cfClassId>
<cfClassSchemeId>40e90e2f-446d-460a-98e5-5dce57550c48</cfClassSchemeId>
<cfStartDate>2005-06-03T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfPers_ResPubl>
<cfPersId>ibn-person-29431</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2005-06-03T24:00:00</cfStartDate>
</cfPers_ResPubl>
</cfResPubl>
<cfPers>
<cfPersId>ibn-Pers-29431</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-29431-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2005-06-03T24:00:00</cfStartDate>
<cfFamilyNames>Zhang</cfFamilyNames>
<cfFirstNames>Jun</cfFirstNames>
</cfPersName_Pers>
</cfPers>
</CERIF>