The Generalized Lagrangian Mechanical Systems
Închide
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
375 1
Ultima descărcare din IBN:
2019-01-19 11:48
SM ISO690:2012
MIRON, Radu. The Generalized Lagrangian Mechanical Systems. In: Buletinul Academiei de Ştiinţe a Moldovei. Matematica. 2012, nr. 2(69), pp. 74-80. ISSN 1024-7696.
EXPORT metadate:
Google Scholar
Crossref
CERIF
BibTeX
DataCite
Dublin Core
Buletinul Academiei de Ştiinţe a Moldovei. Matematica
Numărul 2(69) / 2012 / ISSN 1024-7696

The Generalized Lagrangian Mechanical Systems

Pag. 74-80

Miron Radu
 
„Alexandru Ioan Cuza” University, Iasi
 
Disponibil în IBN: 16 decembrie 2013


Rezumat

A generalized Lagrangian mechanics is a triple ΣGL=(M,E,Fe) formed by a real n-dimensional manifold M, the generalized kinetic energy E and the external forces Fe. The Lagrange equations (or fundamental equations) can be defined for a generalized Lagrangian mechanical system ΣGL. We get a straightforward extension of the notions of Riemannian, or Finslerian, or Lagrangian mechanical systems studied in the recent book [7]. The applications of this systems in Mechanics, Physical Fields or Relativistic Optics are pointed out. Much more information can be found in the books or papers from References [1–10].

Cuvinte-cheie
Generalized Lagrangian system, Lagrange equations, generalized kinetic energy.

DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xmlns='http://datacite.org/schema/kernel-3' xsi:schemaLocation='http://datacite.org/schema/kernel-3 http://schema.datacite.org/meta/kernel-3/metadata.xsd'>
<creators>
<creator>
<creatorName>Miron, R.</creatorName>
<affiliation>Universitatea "Alexandru Ioan Cuza", Iaşi, România</affiliation>
</creator>
</creators>
<titles>
<title xml:lang='en'>The Generalized Lagrangian Mechanical Systems</title>
</titles>
<publisher>Instrumentul Bibliometric National</publisher>
<publicationYear>2012</publicationYear>
<relatedIdentifier relatedIdentifierType='ISSN' relationType='IsPartOf'>1024-7696</relatedIdentifier>
<subjects>
<subject>Generalized Lagrangian system</subject>
<subject>Lagrange equations</subject>
<subject>generalized kinetic energy.</subject>
</subjects>
<dates>
<date dateType='Issued'>2012-07-02</date>
</dates>
<resourceType resourceTypeGeneral='Text'>Journal article</resourceType>
<descriptions>
<description xml:lang='en' descriptionType='Abstract'>A generalized Lagrangian mechanics is a triple ΣGL=(M,E,Fe) formed by a real n-dimensional manifold M, the generalized kinetic energy E and the external forces Fe. The Lagrange equations (or fundamental equations) can be defined for a
generalized Lagrangian mechanical system ΣGL. We get a straightforward extension of the notions of  Riemannian, or Finslerian, or Lagrangian mechanical systems studied
in the recent book [7]. The applications of this systems in Mechanics, Physical Fields or Relativistic Optics are pointed out. Much more information can be found in the
books or papers from References [1–10].
</description>
</descriptions>
<formats>
<format>application/pdf</format>
</formats>
</resource>