The Generalized Lagrangian Mechanical Systems
Închide
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
439 1
Ultima descărcare din IBN:
2019-01-19 11:48
SM ISO690:2012
MIRON, Radu. The Generalized Lagrangian Mechanical Systems. In: Buletinul Academiei de Ştiinţe a Moldovei. Matematica. 2012, nr. 2(69), pp. 74-80. ISSN 1024-7696.
EXPORT metadate:
Google Scholar
Crossref
CERIF
BibTeX
DataCite
Dublin Core
Buletinul Academiei de Ştiinţe a Moldovei. Matematica
Numărul 2(69) / 2012 / ISSN 1024-7696

The Generalized Lagrangian Mechanical Systems

Pag. 74-80

Miron Radu
 
„Alexandru Ioan Cuza” University, Iasi
 
Disponibil în IBN: 16 decembrie 2013


Rezumat

A generalized Lagrangian mechanics is a triple ΣGL=(M,E,Fe) formed by a real n-dimensional manifold M, the generalized kinetic energy E and the external forces Fe. The Lagrange equations (or fundamental equations) can be defined for a generalized Lagrangian mechanical system ΣGL. We get a straightforward extension of the notions of Riemannian, or Finslerian, or Lagrangian mechanical systems studied in the recent book [7]. The applications of this systems in Mechanics, Physical Fields or Relativistic Optics are pointed out. Much more information can be found in the books or papers from References [1–10].

Cuvinte-cheie
Generalized Lagrangian system, Lagrange equations, generalized kinetic energy.

Cerif XML Export

<?xml version='1.0' encoding='utf-8'?>
<CERIF xmlns='urn:xmlns:org:eurocris:cerif-1.5-1' xsi:schemaLocation='urn:xmlns:org:eurocris:cerif-1.5-1 http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.5/CERIF_1.5_1.xsd' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' release='1.5' date='2012-10-07' sourceDatabase='Output Profile'>
<cfResPubl>
<cfResPublId>ibn-ResPubl-21282</cfResPublId>
<cfResPublDate>2012-07-02</cfResPublDate>
<cfVol>69</cfVol>
<cfIssue>2</cfIssue>
<cfStartPage>74</cfStartPage>
<cfISSN>1024-7696</cfISSN>
<cfURI>https://ibn.idsi.md/ro/vizualizare_articol/21282</cfURI>
<cfTitle cfLangCode='EN' cfTrans='o'>The Generalized Lagrangian Mechanical Systems</cfTitle>
<cfKeyw cfLangCode='EN' cfTrans='o'>Generalized Lagrangian system; Lagrange equations; generalized kinetic energy.</cfKeyw>
<cfAbstr cfLangCode='EN' cfTrans='o'>A generalized Lagrangian mechanics is a triple ΣGL=(M,E,Fe) formed by a real n-dimensional manifold M, the generalized kinetic energy E and the external forces Fe. The Lagrange equations (or fundamental equations) can be defined for a
generalized Lagrangian mechanical system ΣGL. We get a straightforward extension of the notions of  Riemannian, or Finslerian, or Lagrangian mechanical systems studied
in the recent book [7]. The applications of this systems in Mechanics, Physical Fields or Relativistic Optics are pointed out. Much more information can be found in the
books or papers from References [1–10].
</cfAbstr>
<cfResPubl_Class>
<cfClassId>eda2d9e9-34c5-11e1-b86c-0800200c9a66</cfClassId>
<cfClassSchemeId>759af938-34ae-11e1-b86c-0800200c9a66</cfClassSchemeId>
<cfStartDate>2012-07-02T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfResPubl_Class>
<cfClassId>e601872f-4b7e-4d88-929f-7df027b226c9</cfClassId>
<cfClassSchemeId>40e90e2f-446d-460a-98e5-5dce57550c48</cfClassSchemeId>
<cfStartDate>2012-07-02T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfPers_ResPubl>
<cfPersId>ibn-person-13865</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2012-07-02T24:00:00</cfStartDate>
</cfPers_ResPubl>
</cfResPubl>
<cfPers>
<cfPersId>ibn-Pers-13865</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-13865-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2012-07-02T24:00:00</cfStartDate>
<cfFamilyNames>Miron</cfFamilyNames>
<cfFirstNames>Radu</cfFirstNames>
</cfPersName_Pers>
</cfPers>
</CERIF>