Construction of medial ternary self-orthogonal quasigroups
Închide
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
197 3
Ultima descărcare din IBN:
2024-01-02 11:08
Căutarea după subiecte
similare conform CZU
512.548.7 (16)
Algebră (400)
SM ISO690:2012
FRYZ, Iryna, SOKHATSKY, Fedir M.. Construction of medial ternary self-orthogonal quasigroups. In: Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2022, nr. 3(100), pp. 41-55. ISSN 1024-7696. DOI: https://doi.org/10.56415/basm.y2022.i3.p41
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
Numărul 3(100) / 2022 / ISSN 1024-7696 /ISSNe 2587-4322

Construction of medial ternary self-orthogonal quasigroups

DOI:https://doi.org/10.56415/basm.y2022.i3.p41
CZU: 512.548.7

Pag. 41-55

Fryz Iryna, Sokhatsky Fedir M.
 
Vasyl Stus Donetsk National University
 
 
Disponibil în IBN: 29 iunie 2023


Rezumat

Algorithms for checking if a medial ternary quasigroup has a set of six triple-wise orthogonal principal parastrophes and a set of six triple-wise strongly orthogonal principal parastrophes are found. It is proved that n-ary strongly selforthogonal linear (including medial) quasigroups do not exist when n > 3.

Cuvinte-cheie
medial quasigroup, orthogonal quasigroups, self-orthogonal quasigroup, strongly self-orthogonal quasigroup, central quasigroup, determinant, polynomial

Cerif XML Export

<?xml version='1.0' encoding='utf-8'?>
<CERIF xmlns='urn:xmlns:org:eurocris:cerif-1.5-1' xsi:schemaLocation='urn:xmlns:org:eurocris:cerif-1.5-1 http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.5/CERIF_1.5_1.xsd' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' release='1.5' date='2012-10-07' sourceDatabase='Output Profile'>
<cfResPubl>
<cfResPublId>ibn-ResPubl-183899</cfResPublId>
<cfResPublDate>2022-12-29</cfResPublDate>
<cfVol>100</cfVol>
<cfIssue>3</cfIssue>
<cfStartPage>41</cfStartPage>
<cfISSN>1024-7696</cfISSN>
<cfURI>https://ibn.idsi.md/ro/vizualizare_articol/183899</cfURI>
<cfTitle cfLangCode='EN' cfTrans='o'>Construction of medial ternary self-orthogonal quasigroups</cfTitle>
<cfKeyw cfLangCode='EN' cfTrans='o'>medial quasigroup; orthogonal quasigroups; self-orthogonal
quasigroup; strongly self-orthogonal quasigroup; central quasigroup; determinant; polynomial</cfKeyw>
<cfAbstr cfLangCode='EN' cfTrans='o'><p>Algorithms for checking if a medial ternary quasigroup has a set of six triple-wise orthogonal principal parastrophes and a set of six triple-wise strongly orthogonal principal parastrophes are found. It is proved that n-ary strongly selforthogonal linear (including medial) quasigroups do not exist when n &gt; 3.</p></cfAbstr>
<cfResPubl_Class>
<cfClassId>eda2d9e9-34c5-11e1-b86c-0800200c9a66</cfClassId>
<cfClassSchemeId>759af938-34ae-11e1-b86c-0800200c9a66</cfClassSchemeId>
<cfStartDate>2022-12-29T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfResPubl_Class>
<cfClassId>e601872f-4b7e-4d88-929f-7df027b226c9</cfClassId>
<cfClassSchemeId>40e90e2f-446d-460a-98e5-5dce57550c48</cfClassSchemeId>
<cfStartDate>2022-12-29T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfPers_ResPubl>
<cfPersId>ibn-person-54082</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2022-12-29T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-46885</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2022-12-29T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfFedId>
<cfFedIdId>ibn-doi-183899</cfFedIdId>
<cfFedId>10.56415/basm.y2022.i3.p41</cfFedId>
<cfStartDate>2022-12-29T24:00:00</cfStartDate>
<cfFedId_Class>
<cfClassId>31d222b4-11e0-434b-b5ae-088119c51189</cfClassId>
<cfClassSchemeId>bccb3266-689d-4740-a039-c96594b4d916</cfClassSchemeId>
</cfFedId_Class>
<cfFedId_Srv>
<cfSrvId>5123451</cfSrvId>
<cfClassId>eda2b2e2-34c5-11e1-b86c-0800200c9a66</cfClassId>
<cfClassSchemeId>5a270628-f593-4ff4-a44a-95660c76e182</cfClassSchemeId>
</cfFedId_Srv>
</cfFedId>
</cfResPubl>
<cfPers>
<cfPersId>ibn-Pers-54082</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-54082-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2022-12-29T24:00:00</cfStartDate>
<cfFamilyNames>Fryz</cfFamilyNames>
<cfFirstNames>Iryna</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-46885</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-46885-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2022-12-29T24:00:00</cfStartDate>
<cfFamilyNames>Sokhatsky</cfFamilyNames>
<cfFirstNames>Fedir M.</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfSrv>
<cfSrvId>5123451</cfSrvId>
<cfName cfLangCode='en' cfTrans='o'>CrossRef DOI prefix service</cfName>
<cfDescr cfLangCode='en' cfTrans='o'>The service of issuing DOI prefixes to publishers</cfDescr>
<cfKeyw cfLangCode='en' cfTrans='o'>persistent identifier; Digital Object Identifier</cfKeyw>
</cfSrv>
</CERIF>