Conţinutul numărului revistei |
Articolul precedent |
Articolul urmator |
![]() |
![]() ![]() |
Căutarea după subiecte similare conform CZU |
519.63:532.516.5 (1) |
Matematică computațională. Analiză numerică. Programarea calculatoarelor (117) |
Mişcarea lichidelor. Hidrodinamică (47) |
![]() BALTAG, Iurie. Determination of some solutions of the stationary 2D Navier-Stokes equations. In: Journal of Engineering Sciences. 2022, nr. 4, pp. 38-50. ISSN 2587-3474. 10.52326/jes.utm.2022.29(4).03 |
EXPORT metadate: Google Scholar Crossref CERIF DataCite Dublin Core |
Journal of Engineering Sciences | |||||
Numărul 4 / 2022 / ISSN 2587-3474 /ISSNe 2587-3482 | |||||
|
|||||
DOI: https://doi.org/10.52326/jes.utm.2022.29(4).03 | |||||
CZU: 519.63:532.516.5 | |||||
Pag. 38-50 | |||||
|
|||||
![]() |
|||||
Rezumat | |||||
In this paper, various solutions of the stationary Navier-Stokes equations, which describe the planar flow of an incompressible liquid (or gas), are determined, i.e., solutions containing the components of the velocity of flow - the functions u, v and the created pressure - P. The paper contains three proven theorems, as well as various examples and particular examined cases. Applying Theorem 1, we can find various solutions, where the velocity components represent the imaginary and real parts of a differentiable function of a complex variable. Theorem 2 allows us to determine solutions, where the velocity components are expressed by the partial derivatives of the solutions of Laplace's equation of a special form. It is to be mentioned that these theorems give us solutions that do not depend on the viscosity parameter λ. In theorem 3, an original method for obtaining a series of solutions of the Navier-Stokes equations is presented, in which the viscosity coefficient λ participates explicitly; these solutions cannot be obtained by applying Theorems 1 or 2. The paper contains a large number of particular cases examined and examples of exact determined solutions |
|||||
Cuvinte-cheie stationary two-dimensional Navier-Stokes equations, system of equations with partial derivatives, exact solutions, method of separation of variables, Viscosity, pressure, velocity of plane flow of a liquid or gas, ecuații staționare bidimensionale Navier-Stokes, sistem de ecuații cu derivate parțiale, soluții exacte, metoda separării variabilelor, vâscozitate, presiune, viteza fluxului de curgere plană a unui lichid sau gaz |
|||||
|
Crossref XML Export
<?xml version='1.0' encoding='utf-8'?> <doi_batch version='4.3.7' xmlns='http://www.crossref.org/schema/4.3.7' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xsi:schemaLocation='http://www.crossref.org/schema/4.3.7 http://www.crossref.org/schema/deposit/crossref4.3.7.xsd'> <head> <doi_batch_id>ibn-172243</doi_batch_id> <timestamp>1679307702</timestamp> <depositor> <depositor_name>Information Society Development Instiute, Republic of Moldova</depositor_name> <email_address>idsi@asm.md</email_address> </depositor> <registrant>Universitatea Tehnică a Moldovei</registrant> </head> <body> <journal> <journal_metadata> <full_title>Journal of Engineering Sciences</full_title> <issn media_type='print'>25873474</issn> </journal_metadata> <journal_issue> <publication_date media_type='print'> <year>2022</year> </publication_date> <issue>4</issue> </journal_issue> <journal_article publication_type='full_text'><titles> <title><p>Determination of some solutions of the stationary 2D Navier-Stokes equations</p></title> </titles> <contributors> <person_name sequence='first' contributor_role='author'> <given_name>Iurie</given_name> <surname>Baltag</surname> </person_name> </contributors> <publication_date media_type='print'> <year>2022</year> </publication_date> <pages> <first_page>38</first_page> <last_page>50</last_page> </pages> <doi_data> <doi>10.52326/jes.utm.2022.29(4).03</doi> <resource>http://www.crossref.org/</resource> </doi_data> </journal_article> </journal> </body> </doi_batch>