Upper Bounds for the Number of Limit Cycles for a Class of Polynomial Differential Systems Via The Averaging Method
Închide
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
435 14
Ultima descărcare din IBN:
2023-11-15 10:06
Căutarea după subiecte
similare conform CZU
517.91/.517.93 (1)
Analiză (298)
SM ISO690:2012
BENADOUANE, Sabah, BERBACHE, Aziza, BENDJEDDOU, Ahmed. Upper Bounds for the Number of Limit Cycles for a Class of Polynomial Differential Systems Via The Averaging Method. In: Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2021, nr. 3(97), pp. 72-87. ISSN 1024-7696.
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
Numărul 3(97) / 2021 / ISSN 1024-7696 /ISSNe 2587-4322

Upper Bounds for the Number of Limit Cycles for a Class of Polynomial Differential Systems Via The Averaging Method

CZU: 517.91/.517.93
MSC 2010: 34C07, 34C23, 37G15.

Pag. 72-87

Benadouane Sabah, Berbache Aziza, Bendjeddou Ahmed
 
Ferhat Abbas University Setif
 
Disponibil în IBN: 13 octombrie 2022


Rezumat

In this paper, we study the number of limit cycles of polynomial differential systems of the form x˙ = y y˙ = −x − "(h1 (x) y2 + g1 (x) y2 +1 + f1 (x) y2 +2) − "2(h2 (x) y2 + g2 (x) y2 +1 + f2 (x) y2 +2) where m, n, k and are positive integers, hi, gi and fi have degree n,m and k, respectively for each i = 1, 2, and " is a small parameter. We use the averaging theory of first and second order to provide an accurate upper bound of the number of limit cycles that bifurcate from the periodic orbits of the linear center x˙ = y, y˙ = −x. We give an example for which this bound is reached.

Cuvinte-cheie
limit cycles, averaging theory, Li´enard differential systems