Second order state-dependent sweeping process with unbounded perturbation
Închide
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
351 3
Ultima descărcare din IBN:
2024-02-13 16:17
Căutarea după subiecte
similare conform CZU
517.9 (244)
Ecuații diferențiale. Ecuații integrale. Alte ecuații funcționale. Diferențe finite. Calculul variațional. Analiză funcțională (242)
SM ISO690:2012
AFFANE, Doria, FETOUCI, Nora, YAROU, Mustapha Fateh. Second order state-dependent sweeping process with unbounded perturbation. In: Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2021, nr. 3(97), pp. 50-71. ISSN 1024-7696.
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
Numărul 3(97) / 2021 / ISSN 1024-7696 /ISSNe 2587-4322

Second order state-dependent sweeping process with unbounded perturbation

CZU: 517.9
MSC 2010: 34A60, 49J53 .

Pag. 50-71

Affane Doria, Fetouci Nora, Yarou Mustapha Fateh
 
University of Jijel
 
 
Disponibil în IBN: 13 octombrie 2022


Rezumat

We establish, in the setting of an infinite dimensional Hilbert space, results concerning the existence of solutions of second order ”nonconvex sweeping process” for a class of uniformly prox-regular sets depending on time and state. The perturbation considered here is general and takes the form of a sum of a single-valued Carath´eodory mapping and a set-valued unbounded mapping. We deal also with a delayed perturbation, that is the external forces applied on the system in presence of a finite delay. We extend a discretization approach known for the time-dependent case to the time and state-dependent sweeping process.

Cuvinte-cheie
Differential inclusion, uniformly prox-regular sets, unbounded perturbation, Carath´eodory mapping, delay

Cerif XML Export

<?xml version='1.0' encoding='utf-8'?>
<CERIF xmlns='urn:xmlns:org:eurocris:cerif-1.5-1' xsi:schemaLocation='urn:xmlns:org:eurocris:cerif-1.5-1 http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.5/CERIF_1.5_1.xsd' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' release='1.5' date='2012-10-07' sourceDatabase='Output Profile'>
<cfResPubl>
<cfResPublId>ibn-ResPubl-165531</cfResPublId>
<cfResPublDate>2021-12-29</cfResPublDate>
<cfVol>97</cfVol>
<cfIssue>3</cfIssue>
<cfStartPage>50</cfStartPage>
<cfISSN>1024-7696</cfISSN>
<cfURI>https://ibn.idsi.md/ro/vizualizare_articol/165531</cfURI>
<cfTitle cfLangCode='EN' cfTrans='o'>Second order state-dependent sweeping process with unbounded perturbation</cfTitle>
<cfKeyw cfLangCode='EN' cfTrans='o'>Differential inclusion; uniformly prox-regular sets; unbounded perturbation; Carath´eodory mapping; delay</cfKeyw>
<cfAbstr cfLangCode='EN' cfTrans='o'><p>We establish, in the setting of an infinite dimensional Hilbert space, results concerning the existence of solutions of second order &rdquo;nonconvex sweeping process&rdquo; for a class of uniformly prox-regular sets depending on time and state. The perturbation considered here is general and takes the form of a sum of a single-valued Carath&acute;eodory mapping and a set-valued unbounded mapping. We deal also with a delayed perturbation, that is the external forces applied on the system in presence of a finite delay. We extend a discretization approach known for the time-dependent case to the time and state-dependent sweeping process.</p></cfAbstr>
<cfResPubl_Class>
<cfClassId>eda2d9e9-34c5-11e1-b86c-0800200c9a66</cfClassId>
<cfClassSchemeId>759af938-34ae-11e1-b86c-0800200c9a66</cfClassSchemeId>
<cfStartDate>2021-12-29T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfResPubl_Class>
<cfClassId>e601872f-4b7e-4d88-929f-7df027b226c9</cfClassId>
<cfClassSchemeId>40e90e2f-446d-460a-98e5-5dce57550c48</cfClassSchemeId>
<cfStartDate>2021-12-29T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfPers_ResPubl>
<cfPersId>ibn-person-103146</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2021-12-29T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-103147</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2021-12-29T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-103148</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2021-12-29T24:00:00</cfStartDate>
</cfPers_ResPubl>
</cfResPubl>
<cfPers>
<cfPersId>ibn-Pers-103146</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-103146-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2021-12-29T24:00:00</cfStartDate>
<cfFamilyNames>Affane</cfFamilyNames>
<cfFirstNames>Doria</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-103147</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-103147-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2021-12-29T24:00:00</cfStartDate>
<cfFamilyNames>Fetouci</cfFamilyNames>
<cfFirstNames>Nora</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-103148</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-103148-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2021-12-29T24:00:00</cfStartDate>
<cfFamilyNames>Yarou</cfFamilyNames>
<cfFirstNames>Mustapha Fateh</cfFirstNames>
</cfPersName_Pers>
</cfPers>
</CERIF>