Unified Approach to Starlike and Convex Functions Involving Poisson Distribution Series
Închide
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
487 5
Ultima descărcare din IBN:
2024-02-05 10:38
Căutarea după subiecte
similare conform CZU
517.958+519.2 (1)
Ecuații diferențiale. Ecuații integrale. Alte ecuații funcționale. Diferențe finite. Calculul variațional. Analiză funcțională (242)
Probabilitate. Statistică matematică (80)
SM ISO690:2012
SHRIGAN, Mallikarjun G., YALCIN, Sibel, ALTINKAYA, Sahsene. Unified Approach to Starlike and Convex Functions Involving Poisson Distribution Series. In: Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2021, nr. 3(97), pp. 11-20. ISSN 1024-7696.
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
Numărul 3(97) / 2021 / ISSN 1024-7696 /ISSNe 2587-4322

Unified Approach to Starlike and Convex Functions Involving Poisson Distribution Series

CZU: 517.958+519.2
MSC 2010: 30C45.

Pag. 11-20

Shrigan Mallikarjun G.1, Yalcin Sibel2, Altinkaya Sahsene2
 
1 Bhivarabai Sawant Institute of Technolgy and Research (BSITOR) ,
2 University of Uludag, Bursa, Turkey
 
 
Disponibil în IBN: 13 octombrie 2022


Rezumat

The motivation behind present paper is to establish connection between analytic univalent functions T Sp(, , ) and UCT (, , ) by applying Hadamard product involving Poisson distribution series. We likewise consider an integral operator connection with this series.

Cuvinte-cheie
phrases: Starlike functions, Convex functions, Poisson distribution series, Convolution operator, Conic domains

Cerif XML Export

<?xml version='1.0' encoding='utf-8'?>
<CERIF xmlns='urn:xmlns:org:eurocris:cerif-1.5-1' xsi:schemaLocation='urn:xmlns:org:eurocris:cerif-1.5-1 http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.5/CERIF_1.5_1.xsd' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' release='1.5' date='2012-10-07' sourceDatabase='Output Profile'>
<cfResPubl>
<cfResPublId>ibn-ResPubl-165525</cfResPublId>
<cfResPublDate>2021-12-29</cfResPublDate>
<cfVol>97</cfVol>
<cfIssue>3</cfIssue>
<cfStartPage>11</cfStartPage>
<cfISSN>1024-7696</cfISSN>
<cfURI>https://ibn.idsi.md/ro/vizualizare_articol/165525</cfURI>
<cfTitle cfLangCode='EN' cfTrans='o'>Unified Approach to Starlike and Convex Functions Involving Poisson Distribution Series</cfTitle>
<cfKeyw cfLangCode='EN' cfTrans='o'>phrases: Starlike functions; Convex functions; Poisson distribution
series; Convolution operator; Conic domains</cfKeyw>
<cfAbstr cfLangCode='EN' cfTrans='o'><p>The motivation behind present paper is to establish connection between analytic univalent functions T Sp(, , ) and UCT (, , ) by applying Hadamard product involving Poisson distribution series. We likewise consider an integral operator connection with this series.</p></cfAbstr>
<cfResPubl_Class>
<cfClassId>eda2d9e9-34c5-11e1-b86c-0800200c9a66</cfClassId>
<cfClassSchemeId>759af938-34ae-11e1-b86c-0800200c9a66</cfClassSchemeId>
<cfStartDate>2021-12-29T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfResPubl_Class>
<cfClassId>e601872f-4b7e-4d88-929f-7df027b226c9</cfClassId>
<cfClassSchemeId>40e90e2f-446d-460a-98e5-5dce57550c48</cfClassSchemeId>
<cfStartDate>2021-12-29T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfPers_ResPubl>
<cfPersId>ibn-person-103140</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2021-12-29T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-103141</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2021-12-29T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-103142</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2021-12-29T24:00:00</cfStartDate>
</cfPers_ResPubl>
</cfResPubl>
<cfPers>
<cfPersId>ibn-Pers-103140</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-103140-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2021-12-29T24:00:00</cfStartDate>
<cfFamilyNames>Shrigan</cfFamilyNames>
<cfFirstNames>Mallikarjun G.</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-103141</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-103141-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2021-12-29T24:00:00</cfStartDate>
<cfFamilyNames>Yalcin</cfFamilyNames>
<cfFirstNames>Sibel</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-103142</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-103142-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2021-12-29T24:00:00</cfStartDate>
<cfFamilyNames>Altinkaya</cfFamilyNames>
<cfFirstNames>Sahsene</cfFirstNames>
</cfPersName_Pers>
</cfPers>
</CERIF>