Conţinutul numărului revistei |
Articolul precedent |
Articolul urmator |
![]() |
![]() ![]() |
Ultima descărcare din IBN: 2022-11-04 15:04 |
Căutarea după subiecte similare conform CZU |
517.925 (36) |
Ecuații diferențiale. Ecuații integrale. Alte ecuații funcționale. Diferențe finite. Calculul variațional. Analiză funcțională (215) |
![]() PRANEVICH, Andrei, GRIN, Alexander, MUSAFIROV, Eduard. Multiple partial integrals of polynomial Hamiltonian systems. In: Acta et commentationes (Ştiinţe Exacte și ale Naturii), 2021, nr. 2(12), pp. 33-42. ISSN 2537-6284. DOI: 10.36120/2587-3644.v12i2.33-42 |
EXPORT metadate: Google Scholar Crossref CERIF DataCite Dublin Core |
Acta et commentationes (Ştiinţe Exacte și ale Naturii) | |||||
Numărul 2(12) / 2021 / ISSN 2537-6284 /ISSNe 2587-3644 | |||||
|
|||||
DOI: https://doi.org/10.36120/2587-3644.v12i2.33-42 | |||||
CZU: 517.925 | |||||
MSC 2010: 37J35, 37K10. | |||||
Pag. 33-42 | |||||
|
|||||
![]() |
|||||
Rezumat | |||||
We consider an autonomous real polynomial Hamiltonian ordinary differential system. Sufficient conditions for the construction of additional first integrals on polynomial partial integrals and multiple polynomial partial integrals are obtained. Classes of autonomous polynomial Hamiltonian ordinary differential systems with first integrals which analytically expressed by multiple polynomial partial integrals are identified. Also we present examples that illustrate the theoretical results. |
|||||
Cuvinte-cheie Hamiltonian system, Darboux integrability, partial integral, multiplicity, sistem Hamiltonian, integrabilitate Darboux, integrala particulara, multiplicitate |
|||||
|
Cerif XML Export
<?xml version='1.0' encoding='utf-8'?> <CERIF xmlns='urn:xmlns:org:eurocris:cerif-1.5-1' xsi:schemaLocation='urn:xmlns:org:eurocris:cerif-1.5-1 http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.5/CERIF_1.5_1.xsd' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' release='1.5' date='2012-10-07' sourceDatabase='Output Profile'> <cfResPubl> <cfResPublId>ibn-ResPubl-150192</cfResPublId> <cfResPublDate>2021-12-29</cfResPublDate> <cfVol>12</cfVol> <cfIssue>2</cfIssue> <cfStartPage>33</cfStartPage> <cfISSN>2537-6284</cfISSN> <cfURI>https://ibn.idsi.md/ro/vizualizare_articol/150192</cfURI> <cfTitle cfLangCode='EN' cfTrans='o'>Multiple partial integrals of polynomial Hamiltonian systems</cfTitle> <cfKeyw cfLangCode='EN' cfTrans='o'>Hamiltonian system; Darboux integrability; partial integral; multiplicity; sistem Hamiltonian; integrabilitate Darboux; integrala particulara; multiplicitate</cfKeyw> <cfAbstr cfLangCode='EN' cfTrans='o'><p>We consider an autonomous real polynomial Hamiltonian ordinary differential system. Sufficient conditions for the construction of additional first integrals on polynomial partial integrals and multiple polynomial partial integrals are obtained. Classes of autonomous polynomial Hamiltonian ordinary differential systems with first integrals which analytically expressed by multiple polynomial partial integrals are identified. Also we present examples that illustrate the theoretical results.</p></cfAbstr> <cfAbstr cfLangCode='RO' cfTrans='o'><p>Se considera sistemele autonome, reale, polinomiale s, i Hamiltoniane de ecuatii diferentiale ordinare. Sunt obtinute unele conditii suficiente de construire a integralelor prime pe baza integralelor particulare polinomiale simple si multiple si sunt identificate sistemele diferentiale ce au astfel de integrale prime. Rezultatele teoretice sunt ilustrate prin exempl</p></cfAbstr> <cfResPubl_Class> <cfClassId>eda2d9e9-34c5-11e1-b86c-0800200c9a66</cfClassId> <cfClassSchemeId>759af938-34ae-11e1-b86c-0800200c9a66</cfClassSchemeId> <cfStartDate>2021-12-29T24:00:00</cfStartDate> </cfResPubl_Class> <cfResPubl_Class> <cfClassId>e601872f-4b7e-4d88-929f-7df027b226c9</cfClassId> <cfClassSchemeId>40e90e2f-446d-460a-98e5-5dce57550c48</cfClassSchemeId> <cfStartDate>2021-12-29T24:00:00</cfStartDate> </cfResPubl_Class> <cfPers_ResPubl> <cfPersId>ibn-person-96992</cfPersId> <cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId> <cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId> <cfStartDate>2021-12-29T24:00:00</cfStartDate> </cfPers_ResPubl> <cfPers_ResPubl> <cfPersId>ibn-person-90470</cfPersId> <cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId> <cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId> <cfStartDate>2021-12-29T24:00:00</cfStartDate> </cfPers_ResPubl> <cfPers_ResPubl> <cfPersId>ibn-person-90485</cfPersId> <cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId> <cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId> <cfStartDate>2021-12-29T24:00:00</cfStartDate> </cfPers_ResPubl> <cfFedId> <cfFedIdId>ibn-doi-150192</cfFedIdId> <cfFedId>10.36120/2587-3644.v12i2.33-42</cfFedId> <cfStartDate>2021-12-29T24:00:00</cfStartDate> <cfFedId_Class> <cfClassId>31d222b4-11e0-434b-b5ae-088119c51189</cfClassId> <cfClassSchemeId>bccb3266-689d-4740-a039-c96594b4d916</cfClassSchemeId> </cfFedId_Class> <cfFedId_Srv> <cfSrvId>5123451</cfSrvId> <cfClassId>eda2b2e2-34c5-11e1-b86c-0800200c9a66</cfClassId> <cfClassSchemeId>5a270628-f593-4ff4-a44a-95660c76e182</cfClassSchemeId> </cfFedId_Srv> </cfFedId> </cfResPubl> <cfPers> <cfPersId>ibn-Pers-96992</cfPersId> <cfPersName_Pers> <cfPersNameId>ibn-PersName-96992-3</cfPersNameId> <cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId> <cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId> <cfStartDate>2021-12-29T24:00:00</cfStartDate> <cfFamilyNames>Pranevich</cfFamilyNames> <cfFirstNames>Andrei</cfFirstNames> <cfFamilyNames>Праневич</cfFamilyNames> <cfFirstNames>Андрей</cfFirstNames> </cfPersName_Pers> </cfPers> <cfPers> <cfPersId>ibn-Pers-90470</cfPersId> <cfPersName_Pers> <cfPersNameId>ibn-PersName-90470-3</cfPersNameId> <cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId> <cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId> <cfStartDate>2021-12-29T24:00:00</cfStartDate> <cfFamilyNames>Grin</cfFamilyNames> <cfFirstNames>Alexander</cfFirstNames> </cfPersName_Pers> </cfPers> <cfPers> <cfPersId>ibn-Pers-90485</cfPersId> <cfPersName_Pers> <cfPersNameId>ibn-PersName-90485-3</cfPersNameId> <cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId> <cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId> <cfStartDate>2021-12-29T24:00:00</cfStartDate> <cfFamilyNames>Musafirov</cfFamilyNames> <cfFirstNames>Eduard</cfFirstNames> </cfPersName_Pers> </cfPers> <cfSrv> <cfSrvId>5123451</cfSrvId> <cfName cfLangCode='en' cfTrans='o'>CrossRef DOI prefix service</cfName> <cfDescr cfLangCode='en' cfTrans='o'>The service of issuing DOI prefixes to publishers</cfDescr> <cfKeyw cfLangCode='en' cfTrans='o'>persistent identifier; Digital Object Identifier</cfKeyw> </cfSrv> </CERIF>