Mechanical, magnetic and magnetostrictive properties of porous Fe-Ga films prepared by electrodeposition
Închide
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
445 0
SM ISO690:2012
NICOLENCO, Aliona, CHEN, Yu, TSYNTSARU, Natalia, CESIULIS, Henrikas, PELLICER, Eva, SORT, Jordi Julia. Mechanical, magnetic and magnetostrictive properties of porous Fe-Ga films prepared by electrodeposition. In: Materials and Design, 2021, nr. 208, pp. 1-11. ISSN 0264-1275. DOI: https://doi.org/10.1016/j.matdes.2021.109915
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Materials and Design
Numărul 208 / 2021 / ISSN 0264-1275 /ISSNe 1873-4197

Mechanical, magnetic and magnetostrictive properties of porous Fe-Ga films prepared by electrodeposition

DOI:https://doi.org/10.1016/j.matdes.2021.109915

Pag. 1-11

Nicolenco Aliona12, Chen Yu1, Tsyntsaru Natalia2, Cesiulis Henrikas34, Pellicer Eva1, Sort Jordi Julia15
 
1 Universitat Autònoma de Barcelona,
2 Institute of Applied Physics,
3 Vilnius University,
4 JSC Elektronikos Perdirbimo Technologijos, Vilnius,
5 Institució Catalana de Recerca i Estudis Avançats (ICREA)
 
 
Disponibil în IBN: 29 iunie 2021


Rezumat

Magnetostriction, known as the ability of magnetic materials to expand or contract in response to magnetic field, is a key property of Fe-Ga alloys exploited in various types of transducers. Usually, thin films of Fe-Ga deposited on rigid substrates suffer from a clamping effect that hinders the propagation of strain. Herein, Fe-Ga films with macroporous, not fully constrained, geometry are prepared by electrodeposition on metallized silicon substrates templated with sub-micrometer-sized polystyrene spheres. For comparison, fully-dense and inherently nanoporous films are prepared by sputtering and electrodeposition, respectively. The electrodeposition mechanism is discussed in terms of electrochemically active species distribution and partial current densities. The composition of the Fe-Ga films has been tuned (2–40 at.% Ga) by varying the electrodeposition parameters. A complete assessment of the nanomechanical and magnetic properties of the films with variable composition and porosity has been performed for an optimized performance. The magnetostriction has been studied by X-ray diffraction applying an in-situ magnetic field. The results demonstrate a larger magnetic-field-induced crystal deformation in templated (macroporous) films compared to the non-templated and fully-dense counterparts. The observed effects in porous Fe-Ga films are very appealing for the design of various strain-engineered nanomaterials, e.g., energy transducers or magnetoelectric composites. 

Cuvinte-cheie
Electrodeposition, Fe-Ga alloy, Magnetostriction, nanoindentation, Porous films