Probleme de decizie ale reţelelor Petri temorizate cu salturi
Închide
Articolul precedent
Articolul urmator
12 0
SM ISO690:2012
ŢIŢCHIEV (CAMERZAN), Inga. Probleme de decizie ale reţelelor Petri temorizate cu salturi. In: International Conference of Young Researchers . Ediția 8, 11-12 noiembrie 2010, Chişinău. Chişinău: Tipogr. Simbol-NP SRL, 2010, p. 85. ISBN 978-9975-9898-4-8..
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
International Conference of Young Researchers
Ediția 8, 2010
Conferința "International Conference of Young Researchers "
Chişinău, Moldova, 11-12 noiembrie 2010

Probleme de decizie ale reţelelor Petri temorizate cu salturi


Pag. 85-85

Ţiţchiev (Camerzan) Inga
 
Universitatea de Stat din Tiraspol
 
Disponibil în IBN: 5 mai 2021


Rezumat

Studierea clasei reţelelor Petri temporizate cu salturi ca modele pentru o clasă largă de sisteme reale a condus la introducerea structurilor de acoperire[2] pentru acestea şi formularea unor probleme de decizie specifice acestora prezentate în acest articol. Definiţia 1 O reţea Petri P/T temporizată cu salturi [1, 4], abreviat TJPTN, este un triplul = (, R, Θ), unde este o TPN, R este o relaţie binară pe mulţimea marcărilor lui ( i. e. R P NP), fiind numită mulţimea salturilor (spontane) ale lui , Θ: T Q0+ este funcţia de temporizare care asociază tranziţiilor întârzieri de timp. Prin marcare a reţelei se va înţelege orice marcare a reţelei de bază(suport) . Regula de j tranziţie a unei Reţele Petri temporizate cu salturi constă în: (RA) regula de j aplicabilitate - o tranziţie t este posibilă la marcarea M în , abreviat Mt, dacă ea este j – posibilă la M adică există o marcare M1 astfel încât MR*M1t; (RC) regula de j calcul - dacă Mt atunci marcarea M este j produsă prin apariţia tranziţiei t la marcarea M, după scurgerea intervalului de timp Θ(t), dacă t este tranziţie temporizată, sau imediat, dacă t este tranziţie imediată, abreviat MtM, dacă există două marcări M1, M2 astfel încât MR*M1tM2R*M. Se introduce noţiunea de reţea Petri temporizată cu salturi R – redusă astfel: Definiţia 2 Fie o reţea Petri temporizată cu salturi marcată: 1. Un salt (M, M) R, este R – redus dacă M M şi M[M0,j. 2. Reţeaua este R – redusă dacă orice salt al ei este R – redus. Pentru Reţelele Petri temporizate cu salturi sunt de asemenea utilizate mecanismele de resetare şi continuitate în vederea păstrării sau ştergerii timpului tranziţiilor. Se păstrează cele trei tipuri de mecanisme: 1. resampling, 2. enabling memory, 3. age memory. Sunt bine cunoscute problemele de decizie puse în legătură cu accesibilitatea, mărginirea, pseudo – viabilitatea, acoperirea pentru Reţele Petri cu salturi [3]. Aceleaşi probleme de decizie se pun şi pentru Reţele Petri temporizate cu salturi. Referitor la decidabilitatea acestor probleme prezentăm următoarele teoreme: Teorema 1 Problemele accesibilităţii, acoperirii, mărginirii, pseudo – viabilităţii, viabilităţii sunt nedecidabile pentru clasa reţelelor Petri temporizate cu salturi marcate. Demonstraţie. Demonstraţia acestei teoreme se bazează pe simularea reţelelor cu 1 – inhibiţie prin reţele Petri cu salturi, fiind cunoscută nedecidabilitatea acestor probleme de decizie pentru clasa reţelelor cu 1 – inhibiţie. Teorema 2 Problemele accesibilităţii, reducerii, acoperirii, mărginirii, finititudinii mulţimii de accesibilitate şi a pseudo - viabilităţii sunt decidabile pentru clasa reţelelor Petri temporizate cu salturi finite. Decidabilitatea ultimelor patru probleme se demonstrează utilizând arborele de acoperire de tip Karp – Miller.

Cuvinte-cheie
reţea Petri temporizată cu salturi, problemă de decizie, arbori de acoperire