Numere complexe. Planul complex. Mulțimea lui Mandelbrot
Articolul precedent
Articolul urmator
255 6
Ultima descărcare din IBN:
2022-11-02 22:48
Căutarea după subiecte
similare conform CZU
511.11 (4)
Teoria numerelor (29)
SM ISO690:2012
GUȘAN, Veronica; GAŞIŢOI, Natalia. Numere complexe. Planul complex. Mulțimea lui Mandelbrot. In: Interuniversitaria. Ediția 16, 8 octombrie 2020, Bălți. Bălți, Republica Moldova: Universitatea de Stat „Alecu Russo” din Bălți, 2020, pp. 328-332. ISBN 978-9975-50-248-1.
EXPORT metadate:
Google Scholar

Dublin Core
Ediția 16, 2020
Colocviul "Interuniversitaria"
Bălți, Moldova, 8 octombrie 2020

Numere complexe. Planul complex. Mulțimea lui Mandelbrot

CZU: 511.11

Pag. 328-332

Gușan Veronica, Gaşiţoi Natalia
Universitatea de Stat „Alecu Russo" din Bălţi
Disponibil în IBN: 7 decembrie 2020


In this article we try to answer a few questions. Where did the complex numbers start from? How are complex numbers defined? Where and how do we represent complex numbers? What is the Mandelbrot set? We know that the multitude of complex numbers is fantastic, but it is even more interesting that with the help of these numbers, ama-zing images can appear on the complex plane. Thanks to Gaston Julia and Benoît Man-delbrot, today it is possible to visualize a fractal set, which being colored according to an algorithm, we enjoy the eyes with extremely beautiful images. Mandelbrot's set, in addition to the interesting features it possesses, also has an aesthetic value, which cannot be denied.

complex numbers, complex plane, Mandelbrot set, fractal