Asymmetric Separation of Convex Sets
Închide
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
450 2
Ultima descărcare din IBN:
2022-04-13 09:52
Căutarea după subiecte
similare conform CZU
514.172 (3)
Geometrie (105)
SM ISO690:2012
SOLTAN, Valeriu. Asymmetric Separation of Convex Sets. In: Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2020, nr. 2(93), pp. 88-101. ISSN 1024-7696.
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
Numărul 2(93) / 2020 / ISSN 1024-7696 /ISSNe 2587-4322

Asymmetric Separation of Convex Sets

CZU: 514.172
MSC 2010: 52A20.

Pag. 88-101

Soltan Valeriu
 
George Mason University
 
 
Disponibil în IBN: 18 septembrie 2020


Rezumat

Based on various types of asymmetric hyperplane separation of a given pair of convex sets K1 and K2 in the n-dimensional Euclidean space, we derive a uniform description of existing types of separation. Our argument uses properties of the polar cone (K1 − K2)0. Also, we consider asymmetric separation of convex cones with a common apex.

Cuvinte-cheie
separation, hyperplane, convex, cone

Cerif XML Export

<?xml version='1.0' encoding='utf-8'?>
<CERIF xmlns='urn:xmlns:org:eurocris:cerif-1.5-1' xsi:schemaLocation='urn:xmlns:org:eurocris:cerif-1.5-1 http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.5/CERIF_1.5_1.xsd' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' release='1.5' date='2012-10-07' sourceDatabase='Output Profile'>
<cfResPubl>
<cfResPublId>ibn-ResPubl-110208</cfResPublId>
<cfResPublDate>2020-09-18</cfResPublDate>
<cfVol>93</cfVol>
<cfIssue>2</cfIssue>
<cfStartPage>88</cfStartPage>
<cfISSN>1024-7696</cfISSN>
<cfURI>https://ibn.idsi.md/ro/vizualizare_articol/110208</cfURI>
<cfTitle cfLangCode='EN' cfTrans='o'>Asymmetric Separation of Convex Sets</cfTitle>
<cfKeyw cfLangCode='EN' cfTrans='o'>separation; hyperplane; convex; cone</cfKeyw>
<cfAbstr cfLangCode='EN' cfTrans='o'><p>Based on various types of asymmetric hyperplane separation of a given pair of convex sets K<sub>1</sub> and K<sub>2</sub> in the n-dimensional Euclidean space, we derive a uniform description of existing types of separation. Our argument uses properties of the polar cone (K<sub>1</sub> &minus; K<sub>2</sub>)<sup>0</sup>. Also, we consider asymmetric separation of convex cones with a common apex.</p></cfAbstr>
<cfResPubl_Class>
<cfClassId>eda2d9e9-34c5-11e1-b86c-0800200c9a66</cfClassId>
<cfClassSchemeId>759af938-34ae-11e1-b86c-0800200c9a66</cfClassSchemeId>
<cfStartDate>2020-09-18T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfResPubl_Class>
<cfClassId>e601872f-4b7e-4d88-929f-7df027b226c9</cfClassId>
<cfClassSchemeId>40e90e2f-446d-460a-98e5-5dce57550c48</cfClassSchemeId>
<cfStartDate>2020-09-18T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfPers_ResPubl>
<cfPersId>ibn-person-21203</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2020-09-18T24:00:00</cfStartDate>
</cfPers_ResPubl>
</cfResPubl>
<cfPers>
<cfPersId>ibn-Pers-21203</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-21203-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2020-09-18T24:00:00</cfStartDate>
<cfFamilyNames>Soltan</cfFamilyNames>
<cfFirstNames>Valeriu</cfFirstNames>
</cfPersName_Pers>
</cfPers>
</CERIF>