Interior angle sums of geodesic triangles in S2×R and H2×R geometries
Închide
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
443 1
Ultima descărcare din IBN:
2020-09-22 15:09
Căutarea după subiecte
similare conform CZU
514.13+514.772.22+528.3 (1)
Geometrie (103)
Geometrie diferențială. Metode algebrice și analitice în geometrie (26)
Geodezie. Topografie. Fotogrametrie. Cartografie (112)
SM ISO690:2012
SZIRMAI, Jeno. Interior angle sums of geodesic triangles in S2×R and H2×R geometries. In: Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2020, nr. 2(93), pp. 44-61. ISSN 1024-7696.
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
Numărul 2(93) / 2020 / ISSN 1024-7696 /ISSNe 2587-4322

Interior angle sums of geodesic triangles in S2×R and H2×R geometries

CZU: 514.13+514.772.22+528.3
MSC 2010: 53A20, 53A35, 52C35, 53B20.

Pag. 44-61

Szirmai Jeno
 
Budapest University of Technology and Economics, Budapest
 
 
Disponibil în IBN: 18 septembrie 2020


Rezumat

In the present paper we study S2×R and H2×R geometries, which are homogeneous Thurston 3-geometries. We analyse the interior angle sums of geodesic triangles in both geometries and we prove that in S2×R space it can be larger than or equal to  and in H2×R space the angle sums can be less than or equal to . This proof is a new direct approach to the issue and it is based on the projective model of S2×R and H2×R geometries described by E. Moln´ar in [7].

Cuvinte-cheie
Thurston geometries, S²×R, H²×R geometries, geodesic triangles, interior angle sum

Cerif XML Export

<?xml version='1.0' encoding='utf-8'?>
<CERIF xmlns='urn:xmlns:org:eurocris:cerif-1.5-1' xsi:schemaLocation='urn:xmlns:org:eurocris:cerif-1.5-1 http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.5/CERIF_1.5_1.xsd' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' release='1.5' date='2012-10-07' sourceDatabase='Output Profile'>
<cfResPubl>
<cfResPublId>ibn-ResPubl-110204</cfResPublId>
<cfResPublDate>2020-09-18</cfResPublDate>
<cfVol>93</cfVol>
<cfIssue>2</cfIssue>
<cfStartPage>44</cfStartPage>
<cfISSN>1024-7696</cfISSN>
<cfURI>https://ibn.idsi.md/ro/vizualizare_articol/110204</cfURI>
<cfTitle cfLangCode='EN' cfTrans='o'>Interior angle sums of geodesic triangles in S2&times;R and H2&times;R geometries</cfTitle>
<cfKeyw cfLangCode='EN' cfTrans='o'>Thurston geometries; S²×R; H²×R geometries; geodesic
triangles; interior angle sum</cfKeyw>
<cfAbstr cfLangCode='EN' cfTrans='o'><p>In the present paper we study S<sup>2</sup>&times;R and H<sup>2</sup>&times;R geometries, which are homogeneous Thurston 3-geometries. We analyse the interior angle sums of geodesic triangles in both geometries and we prove that in S<sup>2</sup>&times;R space it can be larger than or equal to  and in H<sup>2</sup>&times;R space the angle sums can be less than or equal to . This proof is a new direct approach to the issue and it is based on the projective model of S<sup>2</sup>&times;R and H<sup>2</sup>&times;R geometries described by E. Moln&acute;ar in [7].</p></cfAbstr>
<cfResPubl_Class>
<cfClassId>eda2d9e9-34c5-11e1-b86c-0800200c9a66</cfClassId>
<cfClassSchemeId>759af938-34ae-11e1-b86c-0800200c9a66</cfClassSchemeId>
<cfStartDate>2020-09-18T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfResPubl_Class>
<cfClassId>e601872f-4b7e-4d88-929f-7df027b226c9</cfClassId>
<cfClassSchemeId>40e90e2f-446d-460a-98e5-5dce57550c48</cfClassSchemeId>
<cfStartDate>2020-09-18T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfPers_ResPubl>
<cfPersId>ibn-person-81040</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2020-09-18T24:00:00</cfStartDate>
</cfPers_ResPubl>
</cfResPubl>
<cfPers>
<cfPersId>ibn-Pers-81040</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-81040-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2020-09-18T24:00:00</cfStartDate>
<cfFamilyNames>Szirmai</cfFamilyNames>
<cfFirstNames>Jeno</cfFirstNames>
</cfPersName_Pers>
</cfPers>
</CERIF>