Conţinutul numărului revistei |
Articolul precedent |
Articolul urmator |
597 9 |
Ultima descărcare din IBN: 2023-10-02 10:03 |
Căutarea după subiecte similare conform CZU |
512.552 (14) |
Algebră (416) |
SM ISO690:2012 DANCHEV, Peter. Commutative Weakly Tripotent Group Rings. In: Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2020, nr. 2(93), pp. 24-29. ISSN 1024-7696. |
EXPORT metadate: Google Scholar Crossref CERIF DataCite Dublin Core |
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica | ||||||||
Numărul 2(93) / 2020 / ISSN 1024-7696 /ISSNe 2587-4322 | ||||||||
|
||||||||
CZU: 512.552 | ||||||||
MSC 2010: 16S34, 16U99, 20C07. | ||||||||
Pag. 24-29 | ||||||||
|
||||||||
Descarcă PDF | ||||||||
Rezumat | ||||||||
Very recently, Breaz and Cˆımpean introduced and examined in Bull. Korean Math. Soc. (2018) the class of so-called weakly tripotent rings as those rings R whose elements satisfy at leat one of the equations x3 = x or (1 − x)3 = 1 − x. These rings are generally non-commutative. We here obtain a criterion when the commutative group ring RG is weakly tripotent in terms only of a ring R and of a group G plus their sections. Actually, we also show that these weakly tripotent rings are strongly invo-clean rings in the sense of Danchev in Commun. Korean Math. Soc. (2017). Thereby, our established criterion somewhat strengthens previous results on commutative strongly invo-clean group rings, proved by the present author in Univ. J. Math. & Math. Sci. (2018). Moreover, this criterion helps us to construct a commutative strongly invo-clean ring of characteristic 2 which is not weakly tripotent, thus showing that these two ring classes are different. |
||||||||
Cuvinte-cheie Tripotent rings, weakly tripotent rings, strongly invo-clean rings, Group rings |
||||||||
|