Conţinutul numărului revistei |
Articolul precedent |
Articolul urmator |
527 2 |
Ultima descărcare din IBN: 2020-12-03 13:18 |
Căutarea după subiecte similare conform CZU |
517.5+517.98 (2) |
Analiză (306) |
Ecuații diferențiale. Ecuații integrale. Alte ecuații funcționale. Diferențe finite. Calculul variațional. Analiză funcțională (246) |
SM ISO690:2012 DRAGOMIR, Silvestru Sever. Inequalities of Hermite-Hadamard Type for K-Bounded Modulus Convex Complex Functions. In: Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2020, nr. 2(93), pp. 11-23. ISSN 1024-7696. |
EXPORT metadate: Google Scholar Crossref CERIF DataCite Dublin Core |
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica | |||||||||
Numărul 2(93) / 2020 / ISSN 1024-7696 /ISSNe 2587-4322 | |||||||||
|
|||||||||
CZU: 517.5+517.98 | |||||||||
MSC 2010: 26D15, 26D10, 30A10, 30A86. | |||||||||
Pag. 11-23 | |||||||||
|
|||||||||
Descarcă PDF | |||||||||
Rezumat | |||||||||
Let D ⊂ C be a convex domain of complex numbers and K > 0. We say that the function f : D ⊂ C → C is called K-bounded modulus convex, for the given K > 0, if it satisfies the condition |(1 − ) f (x) + f (y) − f ((1 − ) x + y)| ≤ 1 2 K (1 − ) |x − y|2 for any x, y ∈ D and ∈ [0, 1] . In this paper we establish some new HermiteHadamard type inequalities for the complex integral on , a smooth path from C, and K-bounded modulus convex functions. Some examples for integrals on segments and circular paths are also given. |
|||||||||
Cuvinte-cheie complex integral, Continuous functions, Holomorphic functions, Hermite-Hadamard inequality, Midpoint inequality, Trapezoid inequality |
|||||||||
|
DataCite XML Export
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xmlns='http://datacite.org/schema/kernel-3' xsi:schemaLocation='http://datacite.org/schema/kernel-3 http://schema.datacite.org/meta/kernel-3/metadata.xsd'> <creators> <creator> <creatorName>Dragomir, S.</creatorName> <affiliation>College of Engineering and Science Victoria University, Australia</affiliation> </creator> </creators> <titles> <title xml:lang='en'>Inequalities of Hermite-Hadamard Type for K-Bounded Modulus Convex Complex Functions</title> </titles> <publisher>Instrumentul Bibliometric National</publisher> <publicationYear>2020</publicationYear> <relatedIdentifier relatedIdentifierType='ISSN' relationType='IsPartOf'>1024-7696</relatedIdentifier> <subjects> <subject>complex integral</subject> <subject>Continuous functions</subject> <subject>Holomorphic functions</subject> <subject>Hermite-Hadamard inequality</subject> <subject>Midpoint inequality</subject> <subject>Trapezoid inequality</subject> <subject schemeURI='http://udcdata.info/' subjectScheme='UDC'>517.5+517.98</subject> </subjects> <dates> <date dateType='Issued'>2020-09-18</date> </dates> <resourceType resourceTypeGeneral='Text'>Journal article</resourceType> <descriptions> <description xml:lang='en' descriptionType='Abstract'><p>Let D ⊂ C be a convex domain of complex numbers and K > 0. We say that the function f : D ⊂ C → C is called K-bounded modulus convex, for the given K > 0, if it satisfies the condition |(1 − ) f (x) + f (y) − f ((1 − ) x + y)| ≤ 1 2 K (1 − ) |x − y|2 for any x, y ∈ D and ∈ [0, 1] . In this paper we establish some new HermiteHadamard type inequalities for the complex integral on , a smooth path from C, and K-bounded modulus convex functions. Some examples for integrals on segments and circular paths are also given.</p></description> </descriptions> <formats> <format>application/pdf</format> </formats> </resource>