Advanced Hybrid GaN/ZnO Nanoarchitectured Microtubes for Fluorescent Micromotors Driven by UV Light
Close
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
1220 2
Ultima descărcare din IBN:
2021-12-27 10:22
Căutarea după subiecte
similare conform CZU
538.9+539.1+544.5 (1)
Condensed matter physics. Solid state physics (349)
Nuclear physics. Atomic physics. Molecular physics (86)
Chemistry of high energy processes (44)
SM ISO690:2012
WOLFF, Niklas, CIOBANU, Vladimir, ENACHI, Mihail, KAMP, Marius, BRANISTE, Tudor, DUPPEL, Viola, SHREE, Sindu, RAEVSKY, Simion, MEDINA-SANCHEZ, Mariana, ADELUNG, Rainer, SCHMIDT, Oliver, KIENLE, Lorenz, TIGINYANU, Ion. Advanced Hybrid GaN/ZnO Nanoarchitectured Microtubes for Fluorescent Micromotors Driven by UV Light. In: Small, 2020, nr. 2(16), p. 0. ISSN 1613-6810. DOI: https://doi.org/10.1002/smll.201905141
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Small
Numărul 2(16) / 2020 / ISSN 1613-6810 /ISSNe 1613-6829

Advanced Hybrid GaN/ZnO Nanoarchitectured Microtubes for Fluorescent Micromotors Driven by UV Light

DOI: https://doi.org/10.1002/smll.201905141
CZU: 538.9+539.1+544.5

Pag. 0-0

Wolff Niklas1, Ciobanu Vladimir2, Enachi Mihail2, Kamp Marius1, Braniste Tudor2, Duppel Viola3, Shree Sindu1, Raevsky Simion4, Medina-Sanchez Mariana5, Adelung Rainer1, Schmidt Oliver5, Kienle Lorenz1, Tiginyanu Ion26
 
1 University of Kiel,
2 Technical University of Moldova,
3 Max Planck Institute for Solid State Research,
4 Moldova State University,
5 Institut fuer Integrative Nanowissenschaften, Leibniz-Institut fuer Festkoerper- und Werkstoffforschung Dresden,
6 Academy of Sciences of Moldova
 
Proiecte:
 
Disponibil în IBN: 13 martie 2020


Rezumat

The development of functional microstructures with designed hierarchical and complex morphologies and large free active surfaces offers new potential for improvement of the pristine microstructures properties by the synergistic combination of microscopic as well as nanoscopic effects. In this contribution, dedicated methods of transmission electron microscopy (TEM) including tomography are used to characterize the complex hierarchically structured hybrid GaN/ZnO:Au microtubes containing a dense nanowire network on their interior. The presence of an epitaxially stabilized and chemically extremely stable ultrathin layer of ZnO on the inner wall of the produced GaN microtubes is evidenced. Gold nanoparticles initially trigger the catalytic growth of solid solution phase (Ga1– xZnx)(N1– xOx) nanowires into the interior space of the microtube, which are found to be terminated by AuGa-alloy nanodots coated in a shell of amorphous GaOx species after the hydride vapor phase epitaxy process. The structural characterization suggests that this hierarchical design of GaN/ZnO microtubes could offer the potential to exhibit improved photocatalytic properties, which are initially demonstrated under UV light irradiation. As a proof of concept, the produced microtubes are used as photocatalytic micromotors in the presence of hydrogen peroxide solution with luminescent properties, which are appealing for future environmental applications and active matter fundamental studies.

Cuvinte-cheie
hierarchical structures, hybrid material, sphotocatalysis, surface modification, transmission electron microscopy

DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xmlns='http://datacite.org/schema/kernel-3' xsi:schemaLocation='http://datacite.org/schema/kernel-3 http://schema.datacite.org/meta/kernel-3/metadata.xsd'>
<identifier identifierType='DOI'>10.1002/smll.201905141</identifier>
<creators>
<creator>
<creatorName>Wolff, N.</creatorName>
<affiliation>University of Kiel, Germania</affiliation>
</creator>
<creator>
<creatorName>Ciobanu, V.N.</creatorName>
<affiliation>Universitatea Tehnică a Moldovei, Moldova, Republica</affiliation>
</creator>
<creator>
<creatorName>Enachi, M.A.</creatorName>
<affiliation>Universitatea Tehnică a Moldovei, Moldova, Republica</affiliation>
</creator>
<creator>
<creatorName>Kamp, M.</creatorName>
<affiliation>University of Kiel, Germania</affiliation>
</creator>
<creator>
<creatorName>Branişte, F.V.</creatorName>
<affiliation>Universitatea Tehnică a Moldovei, Moldova, Republica</affiliation>
</creator>
<creator>
<creatorName>Duppel, V.</creatorName>
<affiliation>Max Planck Institute for Solid State Research, Germania</affiliation>
</creator>
<creator>
<creatorName>Shree, S.</creatorName>
<affiliation>University of Kiel, Germania</affiliation>
</creator>
<creator>
<creatorName>Raevschi, S.D.</creatorName>
<affiliation>Universitatea de Stat din Moldova, Moldova, Republica</affiliation>
</creator>
<creator>
<creatorName>Medina-Sanchez, M.</creatorName>
<affiliation>Institut fuer Integrative Nanowissenschaften, Leibniz-Institut fuer Festkoerper- und Werkstoffforschung Dresden, Germania</affiliation>
</creator>
<creator>
<creatorName>Adelung, R.</creatorName>
<affiliation>University of Kiel, Germania</affiliation>
</creator>
<creator>
<creatorName>Schmidt, O.G.</creatorName>
<affiliation>Institut fuer Integrative Nanowissenschaften, Leibniz-Institut fuer Festkoerper- und Werkstoffforschung Dresden, Germania</affiliation>
</creator>
<creator>
<creatorName>Kienle, L.</creatorName>
<affiliation>University of Kiel, Germania</affiliation>
</creator>
<creator>
<creatorName>Tighineanu, I.M.</creatorName>
<affiliation>Universitatea Tehnică a Moldovei, Moldova, Republica</affiliation>
</creator>
</creators>
<titles>
<title xml:lang='en'>Advanced Hybrid GaN/ZnO Nanoarchitectured Microtubes for Fluorescent Micromotors Driven by UV Light</title>
</titles>
<publisher>Instrumentul Bibliometric National</publisher>
<publicationYear>2020</publicationYear>
<relatedIdentifier relatedIdentifierType='ISSN' relationType='IsPartOf'>1613-6810</relatedIdentifier>
<subjects>
<subject>hierarchical structures</subject>
<subject>hybrid material</subject>
<subject>sphotocatalysis</subject>
<subject>surface modification</subject>
<subject>transmission electron microscopy</subject>
<subject schemeURI='http://udcdata.info/' subjectScheme='UDC'>538.9+539.1+544.5</subject>
</subjects>
<dates>
<date dateType='Issued'>2020-01-01</date>
</dates>
<resourceType resourceTypeGeneral='Text'>Journal article</resourceType>
<descriptions>
<description xml:lang='en' descriptionType='Abstract'><p>The development of functional microstructures with designed hierarchical and complex morphologies and large free active surfaces offers new potential for improvement of the pristine microstructures properties by the synergistic combination of microscopic as well as nanoscopic effects. In this contribution, dedicated methods of transmission electron microscopy (TEM) including tomography are used to characterize the complex hierarchically structured&nbsp;hybrid&nbsp;GaN/ZnO:Au&nbsp;microtubes&nbsp;containing a dense nanowire network on their interior. The presence of an epitaxially stabilized and chemically extremely stable ultrathin layer of&nbsp;ZnO&nbsp;on the inner wall of the produced&nbsp;GaN&nbsp;microtubes&nbsp;is evidenced. Gold nanoparticles initially trigger the catalytic growth of solid solution phase (Ga<sub>1&ndash;</sub>&nbsp;<sub>x</sub>Zn<sub>x</sub>)(N<sub>1&ndash;</sub>&nbsp;<sub>x</sub>O<sub>x</sub>) nanowires into the interior space of the&nbsp;microtube, which are found to be terminated by AuGa-alloy nanodots coated in a shell of amorphous GaO<sub>x</sub>&nbsp;species after the hydride vapor phase epitaxy process. The structural characterization suggests that this hierarchical design of&nbsp;GaN/ZnO&nbsp;microtubes&nbsp;could offer the potential to exhibit improved photocatalytic properties, which are initially demonstrated under UV light irradiation. As a proof of concept, the produced&nbsp;microtubes&nbsp;are used as photocatalytic micromotors in the presence of hydrogen peroxide solution with luminescent properties, which are appealing for future environmental applications and active matter fundamental studies.</p></description>
</descriptions>
<formats>
<format>application/pdf</format>
</formats>
</resource>