Conţinutul numărului revistei 
Articolul precedent 
Articolul urmator 
405 1 
Ultima descărcare din IBN: 20200109 13:49 
Căutarea după subiecte similare conform CZU 
517.977+517.98+519.6 (1) 
Differential equations. Integral equations. Other functional equations. Finite differences. Calculus of variations. Functional analysis (172) 
Computational mathematics. Numerical analysis (102) 
SM ISO690:2012 BUJAC, Cristina. The classification of a family of cubic differential systems in terms of configurations of invariant lines of the type (3, 3). In: Buletinul Academiei de Ştiinţe a Moldovei. Matematica. 2019, nr. 2(90), pp. 7998. ISSN 10247696. 
EXPORT metadate: Google Scholar Crossref CERIF DataCite Dublin Core 
Buletinul Academiei de Ştiinţe a Moldovei. Matematica  
Numărul 2(90) / 2019 / ISSN 10247696  


CZU: 517.977+517.98+519.6  
MSC 2010: 58K45, 34C05, 34A34.  
Pag. 7998 



Descarcă PDF  
Rezumat  
In this article we consider the class of nondegenerate real planar cubic vector fields, which possess two real and two complex distinct infinite singularities and invariant straight lines, including the line at infinity, of total multiplicity 7. In addition, the systems from this class possess configurations of the type (3, 3). We prove that there are exactly 16 distinct configurations of invariant straight lines for this class and present corresponding examples for the realization of each one of the detected configurations. 

Cuvintecheie Cubic differential system, invariant straight line, multiplicity of invariant lines, infinite and finite singularities, affine invariant polynomial, Group action, configuration of invariant lines, multiplicity of singularity 

