Conţinutul numărului revistei |
Articolul precedent |
Articolul urmator |
![]() |
![]() ![]() |
Ultima descărcare din IBN: 2020-01-09 10:08 |
Căutarea după subiecte similare conform CZU |
515+517.9 (1) |
Mathematics (1261) |
Differential equations. Integral equations. Other functional equations. Finite differences. Calculus of variations. Functional analysis (172) |
![]() SCHLOMIUK, Dana; VULPE, Nicolae. The topological classification of a family of quadratic differential systems in terms of affine invariant polynomials. In: Buletinul Academiei de Ştiinţe a Moldovei. Matematica. 2019, nr. 2(90), pp. 41-55. ISSN 1024-7696. |
EXPORT metadate: Google Scholar Crossref CERIF DataCite Dublin Core |
Buletinul Academiei de Ştiinţe a Moldovei. Matematica | |||||
Numărul 2(90) / 2019 / ISSN 1024-7696 | |||||
|
|||||
CZU: 515+517.9 | |||||
MSC 2010: 58K45, 34C05, 34C23, 34A34. | |||||
Pag. 41-55 | |||||
|
|||||
![]() |
|||||
Rezumat | |||||
In this paper we provide affine invariant necessary and sufficient conditions for a non-degenerate quadratic differential system to have an invariant conic f(x, y) = 0 and a Darboux invariant of the form f(x, y)est with , s ∈ R and s 6= 0. The family of all such systems has a total of seven topologically distinct phase portraits. For each one of these seven phase portraits we provide necessary and sufficient conditions in terms of affine invariant polynomials for a non-degenerate quadratic system in this family to possess this phase portrait. |
|||||
Cuvinte-cheie quadratic differential system, invariant conic, Darboux invariant, affine invariant polynomial, Group action, phase portrait |
|||||
|
DataCite XML Export
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xmlns='http://datacite.org/schema/kernel-3' xsi:schemaLocation='http://datacite.org/schema/kernel-3 http://schema.datacite.org/meta/kernel-3/metadata.xsd'> <creators> <creator> <creatorName>Schlomiuk, D.</creatorName> <affiliation>Université de Montréal, Canada</affiliation> </creator> <creator> <creatorName>Vulpe, N.I.</creatorName> <affiliation>Institutul de Matematică şi Informatică "Vladimir Andrunachievici", Moldova, Republica</affiliation> </creator> </creators> <titles> <title xml:lang='en'><p>The topological classification of a family of quadratic differential systems in terms of affine invariant polynomials</p></title> </titles> <publisher>Instrumentul Bibliometric National</publisher> <publicationYear>2019</publicationYear> <relatedIdentifier relatedIdentifierType='ISSN' relationType='IsPartOf'>1024-7696</relatedIdentifier> <subjects> <subject>quadratic differential system</subject> <subject>invariant conic</subject> <subject>Darboux invariant</subject> <subject>affine invariant polynomial</subject> <subject>Group action</subject> <subject>phase portrait</subject> <subject schemeURI='http://udcdata.info/' subjectScheme='UDC'>515+517.9</subject> </subjects> <dates> <date dateType='Issued'>2019-12-27</date> </dates> <resourceType resourceTypeGeneral='Text'>Journal article</resourceType> <descriptions> <description xml:lang='en' descriptionType='Abstract'><p>In this paper we provide affine invariant necessary and sufficient conditions for a non-degenerate quadratic differential system to have an invariant conic f(x, y) = 0 and a Darboux invariant of the form f(x, y)est with , s ∈ R and s 6= 0. The family of all such systems has a total of seven topologically distinct phase portraits. For each one of these seven phase portraits we provide necessary and sufficient conditions in terms of affine invariant polynomials for a non-degenerate quadratic system in this family to possess this phase portrait.</p></description> </descriptions> <formats> <format>application/pdf</format> </formats> </resource>