The topological classification of a family of quadratic differential systems in terms of affine invariant polynomials
Close
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
492 1
Ultima descărcare din IBN:
2020-01-09 10:08
Căutarea după subiecte
similare conform CZU
515+517.9 (1)
Mathematics (1261)
Differential equations. Integral equations. Other functional equations. Finite differences. Calculus of variations. Functional analysis (172)
SM ISO690:2012
SCHLOMIUK, Dana; VULPE, Nicolae. The topological classification of a family of quadratic differential systems in terms of affine invariant polynomials. In: Buletinul Academiei de Ştiinţe a Moldovei. Matematica. 2019, nr. 2(90), pp. 41-55. ISSN 1024-7696.
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Buletinul Academiei de Ştiinţe a Moldovei. Matematica
Numărul 2(90) / 2019 / ISSN 1024-7696

The topological classification of a family of quadratic differential systems in terms of affine invariant polynomials

CZU: 515+517.9
MSC 2010: 58K45, 34C05, 34C23, 34A34.

Pag. 41-55

Schlomiuk Dana1, Vulpe Nicolae2
 
1 Université de Montréal,
2 Vladimir Andrunachievici Institute of Mathematics and Computer Science
 
Disponibil în IBN: 3 ianuarie 2020


Rezumat

In this paper we provide affine invariant necessary and sufficient conditions for a non-degenerate quadratic differential system to have an invariant conic f(x, y) = 0 and a Darboux invariant of the form f(x, y)est with , s ∈ R and s 6= 0. The family of all such systems has a total of seven topologically distinct phase portraits. For each one of these seven phase portraits we provide necessary and sufficient conditions in terms of affine invariant polynomials for a non-degenerate quadratic system in this family to possess this phase portrait.

Cuvinte-cheie
quadratic differential system, invariant conic, Darboux invariant, affine invariant polynomial, Group action, phase portrait

DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xmlns='http://datacite.org/schema/kernel-3' xsi:schemaLocation='http://datacite.org/schema/kernel-3 http://schema.datacite.org/meta/kernel-3/metadata.xsd'>
<creators>
<creator>
<creatorName>Schlomiuk, D.</creatorName>
<affiliation>Université de Montréal, Canada</affiliation>
</creator>
<creator>
<creatorName>Vulpe, N.I.</creatorName>
<affiliation>Institutul de Matematică şi Informatică "Vladimir Andrunachievici", Moldova, Republica</affiliation>
</creator>
</creators>
<titles>
<title xml:lang='en'><p>The topological classification of a family of quadratic differential systems in terms of affine invariant polynomials</p></title>
</titles>
<publisher>Instrumentul Bibliometric National</publisher>
<publicationYear>2019</publicationYear>
<relatedIdentifier relatedIdentifierType='ISSN' relationType='IsPartOf'>1024-7696</relatedIdentifier>
<subjects>
<subject>quadratic differential system</subject>
<subject>invariant conic</subject>
<subject>Darboux
invariant</subject>
<subject>affine invariant polynomial</subject>
<subject>Group action</subject>
<subject>phase portrait</subject>
<subject schemeURI='http://udcdata.info/' subjectScheme='UDC'>515+517.9</subject>
</subjects>
<dates>
<date dateType='Issued'>2019-12-27</date>
</dates>
<resourceType resourceTypeGeneral='Text'>Journal article</resourceType>
<descriptions>
<description xml:lang='en' descriptionType='Abstract'><p>In this paper we provide affine invariant necessary and sufficient conditions for a non-degenerate quadratic differential system to have an invariant conic f(x, y) = 0 and a Darboux invariant of the form f(x, y)est with , s &isin; R and s 6= 0. The family of all such systems has a total of seven topologically distinct phase portraits. For each one of these seven phase portraits we provide necessary and sufficient conditions in terms of affine invariant polynomials for a non-degenerate quadratic system in this family to possess this phase portrait.</p></description>
</descriptions>
<formats>
<format>application/pdf</format>
</formats>
</resource>