Cubic differential systems with affine real invariant straight lines of total parallel multiplicity six and configurations (3(m),1,1,1)
Close
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
387 5
Ultima descărcare din IBN:
2022-02-10 14:10
Căutarea după subiecte
similare conform CZU
517.917+517.925 (1)
Differential equations. Integral equations. Other functional equations. Finite differences. Calculus of variations. Functional analysis (172)
SM ISO690:2012
PUŢUNTICĂ, Vitalie; SUBA, Alexandru. Cubic differential systems with affine real invariant straight lines of total parallel multiplicity six and configurations (3(m),1,1,1). In: Acta et commentationes (Ştiinţe Exacte și ale Naturii). 2018, nr. 2(6), pp. 95-116. ISSN 2537-6284.
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Acta et commentationes (Ştiinţe Exacte și ale Naturii)
Numărul 2(6) / 2018 / ISSN 2537-6284 /ISSNe 2587-3644

Cubic differential systems with affine real invariant straight lines of total parallel multiplicity six and configurations (3(m),1,1,1)

Sistemele diferențiale cubice cu drepte invariante afine reale de multiplicitate paralelă totală șase și de configurația (3(m),1,1,1)

CZU: 517.917+517.925
MSC 2010: 34C05

Pag. 95-116

Puţuntică Vitalie1, Suba Alexandru2
 
1 Tiraspol State University (TSU),
2 Vladimir Andrunachievici Institute of Mathematics and Computer Science
 
Disponibil în IBN: 31 iulie 2019


Rezumat

We classify all cubic di erential systems with exactly six ane real invariant straight lines (taking into account their parallel multiplicity) of four slopes. One invariant strait line of the rst slope has parallel multiplicity m; m = 1; 2; 3: We proove that there are ve distinct classes of such systems. For every class we carried out the qualitative investigation on the Poincare disk.

Sunt clasi cate sistemele diferentiale cubice cu exact sase drepte a ne reale invariante (tin^anduse cont de multiplicitatea paralela) de patru pante. O dreapta de prima panta are multiplicitatea paralela m; m = 1; 2; 3: Se arata ca exista cinci clase distincte de astfel de sisteme. Fiecare clasa este studiata din punct de vedere calitativ si pe discul Poincare sunt construite portretele de faza.

Cuvinte-cheie
Cubic di erential system, invariant straight line, phase portrait,

Sistem diferenttial cubic, dreaptta invariantta, portret de fază