A representation theorem for bounded distributive hyperlattices
Close
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
151 2
Ultima descărcare din IBN:
2019-04-01 22:11
Căutarea după subiecte
similare conform CZU
512.53+512.55 (2)
Algebra (258)
SM ISO690:2012
AMROUNE, Abdelaziz; OUMHANI, Ali. A representation theorem for bounded distributive hyperlattices. In: Quasigroups and Related Systems. 2018, nr. 1(26), pp. 1-12. ISSN 1561-2848.
EXPORT metadate:
Google Scholar
Crossref
CERIF
BibTeX
DataCite
Dublin Core
Quasigroups and Related Systems
Numărul 1(26) / 2018 / ISSN 1561-2848

A representation theorem for bounded distributive hyperlattices


CZU: 512.53+512.55
MSC 2010: 03E72,06B20,06D72
Pag. 1-12

Amroune Abdelaziz1, Oumhani Ali2
 
1 University Mohamed,
2 Ecole Normale Supèrieure de Bou Saada
 
Disponibil în IBN: 17 august 2018


Rezumat

A representation theorem for bounded distributive hyperlattices is given. The equivalence between the category of Priestley spaces and the dual of the category of bounded distributive hyperlattices is established.

Cuvinte-cheie
Hyp erlattices, distributivehyp erlattices, lterandidealofhyp erlattice, Priestleyspace, homomorphismofhyp erlattices, homomorphismofPriestleyspaces.

Cerif XML Export

<?xml version='1.0' encoding='utf-8'?>
<CERIF xmlns='urn:xmlns:org:eurocris:cerif-1.5-1' xsi:schemaLocation='urn:xmlns:org:eurocris:cerif-1.5-1 http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.5/CERIF_1.5_1.xsd' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' release='1.5' date='2012-10-07' sourceDatabase='Output Profile'>
<cfResPubl>
<cfResPublId>ibn-ResPubl-65100</cfResPublId>
<cfResPublDate>2018-07-01</cfResPublDate>
<cfVol>26</cfVol>
<cfIssue>1</cfIssue>
<cfStartPage>1</cfStartPage>
<cfISSN>1561-2848</cfISSN>
<cfURI>https://ibn.idsi.md/ro/vizualizare_articol/65100</cfURI>
<cfTitle cfLangCode='EN' cfTrans='o'><p>A representation theorem for bounded distributive hyperlattices</p></cfTitle>
<cfKeyw cfLangCode='EN' cfTrans='o'>Hyp erlattices; distributivehyp erlattices; lterandidealofhyp erlattice; Priestleyspace; homomorphismofhyp erlattices; homomorphismofPriestleyspaces.</cfKeyw>
<cfAbstr cfLangCode='EN' cfTrans='o'><p>A representation theorem for bounded distributive hyperlattices is given. The equivalence between the category of Priestley spaces and the dual of the category of bounded distributive hyperlattices is established.</p></cfAbstr>
<cfResPubl_Class>
<cfClassId>eda2d9e9-34c5-11e1-b86c-0800200c9a66</cfClassId>
<cfClassSchemeId>759af938-34ae-11e1-b86c-0800200c9a66</cfClassSchemeId>
<cfStartDate>2018-07-01T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfResPubl_Class>
<cfClassId>e601872f-4b7e-4d88-929f-7df027b226c9</cfClassId>
<cfClassSchemeId>40e90e2f-446d-460a-98e5-5dce57550c48</cfClassSchemeId>
<cfStartDate>2018-07-01T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfPers_ResPubl>
<cfPersId>ibn-person-57880</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2018-07-01T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-57881</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2018-07-01T24:00:00</cfStartDate>
</cfPers_ResPubl>
</cfResPubl>
<cfPers>
<cfPersId>ibn-Pers-57880</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-57880-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2018-07-01T24:00:00</cfStartDate>
<cfFamilyNames>Amroune</cfFamilyNames>
<cfFirstNames>Abdelaziz</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-57881</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-57881-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2018-07-01T24:00:00</cfStartDate>
<cfFamilyNames>Oumhani</cfFamilyNames>
<cfFirstNames>Ali</cfFirstNames>
</cfPersName_Pers>
</cfPers>
</CERIF>