Articolul precedent |
Articolul urmator |
704 0 |
SM ISO690:2012 BUJAC, Cristina. Cubic systems with two distinct infinite singularities and 8 invariant lines. In: Conference of Mathematical Society of the Republic of Moldova, 19-23 august 2014, Chișinău. Chișinău: "VALINEX" SRL, 2014, 3, pp. 229-232. ISBN 978-9975-68-244-2. |
EXPORT metadate: Google Scholar Crossref CERIF DataCite Dublin Core |
Conference of Mathematical Society of the Republic of Moldova 3, 2014 |
|||||||||
Conferința "Conference of Mathematical Society of the Republic of Moldova" Chișinău, Moldova, 19-23 august 2014 | |||||||||
|
|||||||||
Pag. 229-232 | |||||||||
|
|||||||||
Descarcă PDF | |||||||||
Rezumat | |||||||||
In this article we consider real planar cubic systems which possess eight invariant straight lines, including the line at infinity and including their multiplicities, and in addition they possess two distinct infinite singularities. We prove that these systems could have only 23 distinct configurations of invariant straight lines. |
|||||||||
Cuvinte-cheie Cubic differential system, Poincare compactification, invariant straight line, configuration of invariant straight lines, multiplicity of an invariant straight line |
|||||||||
|