Articolul precedent |
Articolul urmator |
1124 0 |
SM ISO690:2012 ARTES, Joan, LLIBRE, Jaume, SCHLOMIUK, Dana, VULPE, Nicolae. Global configurations of singularities for quadratic differential systems with total finite multiplicity three and at most two real singularities. In: Conference of Mathematical Society of the Republic of Moldova, 19-23 august 2014, Chișinău. Chișinău: "VALINEX" SRL, 2014, 3, pp. 221-224. ISBN 978-9975-68-244-2. |
EXPORT metadate: Google Scholar Crossref CERIF DataCite Dublin Core |
Conference of Mathematical Society of the Republic of Moldova 3, 2014 |
||||||||
Conferința "Conference of Mathematical Society of the Republic of Moldova" Chișinău, Moldova, 19-23 august 2014 | ||||||||
|
||||||||
Pag. 221-224 | ||||||||
|
||||||||
Descarcă PDF | ||||||||
Rezumat | ||||||||
In this work we consider the problem of classifying all configurations of singularities, both finite and infinite of quadratic differential systems, with respect to the geometric equivalence relation defined in [2]. This relation is finer than the topological equivalence relation which does not distinguish between a focus and a node or between a strong and a weak focus or between foci of different orders. In this article we continue the work initiated in [3] and obtain the geometric classification of singularities, finite and infinite, for the subclass of quadratic differential systems possessing finite singularities of total multiplicity three and at most two real singularities. |
||||||||
Cuvinte-cheie Quadratic vector fields, infinite and finite singularities, configuration of singularities, geometric equivalence relation |
||||||||
|
Cerif XML Export
<?xml version='1.0' encoding='utf-8'?> <CERIF xmlns='urn:xmlns:org:eurocris:cerif-1.5-1' xsi:schemaLocation='urn:xmlns:org:eurocris:cerif-1.5-1 http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.5/CERIF_1.5_1.xsd' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' release='1.5' date='2012-10-07' sourceDatabase='Output Profile'> <cfResPubl> <cfResPublId>ibn-ResPubl-54807</cfResPublId> <cfResPublDate>2014</cfResPublDate> <cfVol>3</cfVol> <cfStartPage>221</cfStartPage> <cfISBN>978-9975-68-244-2</cfISBN> <cfURI>https://ibn.idsi.md/ro/vizualizare_articol/54807</cfURI> <cfTitle cfLangCode='EN' cfTrans='o'>Global configurations of singularities for quadratic differential systems with total finite multiplicity three and at most two real singularities</cfTitle> <cfKeyw cfLangCode='EN' cfTrans='o'>Quadratic vector fields; infinite and finite singularities; configuration of singularities; geometric equivalence relation</cfKeyw> <cfAbstr cfLangCode='EN' cfTrans='o'>In this work we consider the problem of classifying all configurations of singularities, both finite and infinite of quadratic differential systems, with respect to the geometric equivalence relation defined in [2]. This relation is finer than the topological equivalence relation which does not distinguish between a focus and a node or between a strong and a weak focus or between foci of different orders. In this article we continue the work initiated in [3] and obtain the geometric classification of singularities, finite and infinite, for the subclass of quadratic differential systems possessing finite singularities of total multiplicity three and at most two real singularities. </cfAbstr> <cfResPubl_Class> <cfClassId>eda2d9e9-34c5-11e1-b86c-0800200c9a66</cfClassId> <cfClassSchemeId>759af938-34ae-11e1-b86c-0800200c9a66</cfClassSchemeId> <cfStartDate>2014T24:00:00</cfStartDate> </cfResPubl_Class> <cfResPubl_Class> <cfClassId>e601872f-4b7e-4d88-929f-7df027b226c9</cfClassId> <cfClassSchemeId>40e90e2f-446d-460a-98e5-5dce57550c48</cfClassSchemeId> <cfStartDate>2014T24:00:00</cfStartDate> </cfResPubl_Class> <cfPers_ResPubl> <cfPersId>ibn-person-14925</cfPersId> <cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId> <cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId> <cfStartDate>2014T24:00:00</cfStartDate> </cfPers_ResPubl> <cfPers_ResPubl> <cfPersId>ibn-person-14926</cfPersId> <cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId> <cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId> <cfStartDate>2014T24:00:00</cfStartDate> </cfPers_ResPubl> <cfPers_ResPubl> <cfPersId>ibn-person-14974</cfPersId> <cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId> <cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId> <cfStartDate>2014T24:00:00</cfStartDate> </cfPers_ResPubl> <cfPers_ResPubl> <cfPersId>ibn-person-657</cfPersId> <cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId> <cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId> <cfStartDate>2014T24:00:00</cfStartDate> </cfPers_ResPubl> </cfResPubl> <cfPers> <cfPersId>ibn-Pers-14925</cfPersId> <cfPersName_Pers> <cfPersNameId>ibn-PersName-14925-3</cfPersNameId> <cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId> <cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId> <cfStartDate>2014T24:00:00</cfStartDate> <cfFamilyNames>Artes</cfFamilyNames> <cfFirstNames>Joan</cfFirstNames> </cfPersName_Pers> </cfPers> <cfPers> <cfPersId>ibn-Pers-14926</cfPersId> <cfPersName_Pers> <cfPersNameId>ibn-PersName-14926-3</cfPersNameId> <cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId> <cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId> <cfStartDate>2014T24:00:00</cfStartDate> <cfFamilyNames>Llibre</cfFamilyNames> <cfFirstNames>Jaume</cfFirstNames> </cfPersName_Pers> </cfPers> <cfPers> <cfPersId>ibn-Pers-14974</cfPersId> <cfPersName_Pers> <cfPersNameId>ibn-PersName-14974-3</cfPersNameId> <cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId> <cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId> <cfStartDate>2014T24:00:00</cfStartDate> <cfFamilyNames>Schlomiuk</cfFamilyNames> <cfFirstNames>Dana</cfFirstNames> </cfPersName_Pers> </cfPers> <cfPers> <cfPersId>ibn-Pers-657</cfPersId> <cfPersName_Pers> <cfPersNameId>ibn-PersName-657-3</cfPersNameId> <cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId> <cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId> <cfStartDate>2014T24:00:00</cfStartDate> <cfFamilyNames>Vulpe</cfFamilyNames> <cfFirstNames>Nicolae</cfFirstNames> </cfPersName_Pers> </cfPers> </CERIF>