Colective elementary excitations of bose-einstein condensed two-dimensional magnetoexcitons strongly interacting with electrom-hole plasma
Close
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
960 2
Ultima descărcare din IBN:
2020-10-17 16:43
SM ISO690:2012
MOSKALENKO, Sveatoslav, LIBERMAN, Michael, BOTAN, Victor, DUMANOV, Evgheni, PODLESNY, Igor. Colective elementary excitations of bose-einstein condensed two-dimensional magnetoexcitons strongly interacting with electrom-hole plasma. In: Moldavian Journal of the Physical Sciences, 2005, nr. 2(4), pp. 142-196. ISSN 1810-648X.
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Moldavian Journal of the Physical Sciences
Numărul 2(4) / 2005 / ISSN 1810-648X /ISSNe 2537-6365

Colective elementary excitations of bose-einstein condensed two-dimensional magnetoexcitons strongly interacting with electrom-hole plasma


Pag. 142-196

Moskalenko Sveatoslav1, Liberman Michael2, Botan Victor2, Dumanov Evgheni1, Podlesny Igor1
 
1 Institute of Applied Physics, Academy of Sciences of Moldova,
2 Uppsala University
 
Disponibil în IBN: 19 noiembrie 2013


Rezumat

The collective elementary excitations of a system of Bose-Einstein condensed two- dimensional magnetoexcitons interacting with electron-hole(e-h) plasma in a strong perpendicular magnetic field are studied. The breaking of the gauge symmetry is introduced into the Hamiltonian following the Bogoliubov`s theory of quasiaverages. The motion equations for the summary operators describing the creation and annihilation of magnetoexcitons as well as the density fluctuations of the electronhole(e-h) plasma were derived. They suggest the existence of magneto-exciton-plasmon complexes, the energies of which differ by the energies of one or two plasmon quanta. Starting with these motion equations one can study the Bose-Einstein Condensation (BEC) of different magneto-exciton-plasmon complexes introducing different constants of the broken symmetry correlated with their energies. The Green`s functions constructed from these summary operators are two-particle Green`s functions. They obey the chains of equations expressing the two-particle Green`s functions through the four-particle and six-particle Green`s functions. These chains were truncated in such a way that the six-particle Green`s functions, were expressed through the two-particle ones. At the same time the elementary excitations with different wave vectors were decoupled. As a result of these simplifications the Dyson-type equation in a matrix form for the two-particle Green`s functions was obtained. The determinant constructed from the self-energy part 44 × ( , ) ij P ω ∑ G gives rise to dispersion equation. The dispersion relations were obtained in analytical form, when in the self-energy parts ( , ) ij P ω ∑ G only the terms linear in Coulomb interaction were kept. Taking into account also the terms quadratic in Coulomb interaction the dispersion equation becomes cumbersome and it can be solved only numerically.