Conţinutul numărului revistei |
Articolul precedent |
Articolul urmator |
![]() |
![]() ![]() |
Ultima descărcare din IBN: 2018-07-18 20:47 |
![]() POPA, Mihail; PRICOP, Victor. Applications of algebraic methods in solving
the center-focus problem. In: Buletinul Academiei de Ştiinţe a Moldovei. Matematica. 2013, nr. 1(71), pp. 45-71. ISSN 1024-7696. |
EXPORT metadate: Google Scholar Crossref CERIF BibTeX DataCite Dublin Core |
Buletinul Academiei de Ştiinţe a Moldovei. Matematica | |||||
Numărul 1(71) / 2013 / ISSN 1024-7696 | |||||
|
|||||
Pag. 45-71 | |||||
|
|||||
![]() |
|||||
Rezumat | |||||
The nonlinear differential system x_ =P`i=0 Pmi (x; y); y_ =
P`i=0 Qmi (x; y) is considered, where Pmi and Qmi are homogeneous polynomials of degree mi ¸ 1 in x and y, m0 = 1. The set f1;mig`i=1 consists of a finite number (l < 1) of distinct
integer numbers. It is shown that the maximal number of algebraically independent focal quantities that take part in solving the center-focus problem for the given differential
system with m0 = 1, having at the origin of coordinates a singular point of the second type (center or focus), does not exceed % = 2(
P`i=1mi `) 3: We make an assumption that the number ! of essential conditions for center which solve the center-focus problem for this differential system does not exceed %, i. e. ! · %. |
|||||
Cuvinte-cheie Differential systems, focal quantities, Sibirsky graded algebras, the center-focus problem, Hilbert serie |
|||||
|