Conţinutul numărului revistei |
Articolul precedent |
Articolul urmator |
169 0 |
Căutarea după subiecte similare conform CZU |
517.968 (17) |
Differential equations. Integral equations. Other functional equations. Finite differences. Calculus of variations. Functional analysis (246) |
SM ISO690:2012 CAPCELEA, Maria, CAPCELEA, Titu. B-spline collocation method for solving Fredholm integral equations with discontinuous right-hand side. In: Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2023, nr. 2(102), pp. 92-101. ISSN 1024-7696. DOI: https://doi.org/10.56415/basm.y2023.i2.p92 |
EXPORT metadate: Google Scholar Crossref CERIF DataCite Dublin Core |
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica | ||||||||
Numărul 2(102) / 2023 / ISSN 1024-7696 /ISSNe 2587-4322 | ||||||||
|
||||||||
DOI:https://doi.org/10.56415/basm.y2023.i2.p92 | ||||||||
CZU: 517.968 | ||||||||
Pag. 92-101 | ||||||||
|
||||||||
Descarcă PDF | ||||||||
Rezumat | ||||||||
In this paper, we propose a method for approximating the solution of the linear Fredholm integral equation of the second kind which is defined on a closed contour Г in the complex plane. The right-hand side of the equation is a piecewise continuous function that is numerically defined on a finite set of points on Г. To approximate the solution, we use a linear combination of B-spline functions and Heaviside step functions defined on Г. We discuss both theoretical and practical aspects of the pointwise convergence of the method, including its performance in the vicinity of the points where discontinuities occur. |
||||||||
Cuvinte-cheie Fredholm integral equation, piecewise continuous function, closed contour, complex plane, Numerical approximation, B-spline, step function, convergence |
||||||||
|