Darboux integrability and rational reversibility in cubic systems with two invariant
Close
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
275 0
SM ISO690:2012
LINES, Straight, COZMA, Dumitru. Darboux integrability and rational reversibility in cubic systems with two invariant. In: Electronic Journal of Differential Equations, 2013, vol. 2013, pp. 1-19. ISSN 1072-6691.
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Electronic Journal of Differential Equations
Volumul 2013, i1, 2013 / ISSN 1072-6691 /ISSNe 1550-6150

Darboux integrability and rational reversibility in cubic systems with two invariant


Pag. 1-19

Lines Straight, Cozma Dumitru
 
Tiraspol State University
 
 
Proiecte:
 
Disponibil în IBN: 12 septembrie 2023


Rezumat

We find conditions for a singular point O(0,0) of a center or a focus type to be a center, in a cubic differential system with two distinct invariant straight lines. The presence of a center at O(0, 0) is proved by using the method of Darboux integrability and the rational reversibility

Cuvinte-cheie
center problem, Cubic dierential systems, Darboux integrability, invariant straight lines, rational reversibility

Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc='http://purl.org/dc/elements/1.1/' xmlns:oai_dc='http://www.openarchives.org/OAI/2.0/oai_dc/' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xsi:schemaLocation='http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd'>
<dc:creator>Lines, S.</dc:creator>
<dc:creator>Cozma, D.V.</dc:creator>
<dc:date>2013-01-27</dc:date>
<dc:description xml:lang='en'><p>We find conditions for a singular point O(0,0) of a center or a focus type to be a center, in a cubic differential system with two distinct invariant straight lines. The presence of a center at O(0, 0) is proved by using the method of Darboux integrability and the rational reversibility</p></dc:description>
<dc:source>Electronic Journal of Differential Equations  () 1-19</dc:source>
<dc:subject>center problem</dc:subject>
<dc:subject>Cubic dierential systems</dc:subject>
<dc:subject>Darboux integrability</dc:subject>
<dc:subject>invariant straight lines</dc:subject>
<dc:subject>rational reversibility</dc:subject>
<dc:title>Darboux integrability and rational reversibility in cubic systems with two invariant</dc:title>
<dc:type>info:eu-repo/semantics/article</dc:type>
</oai_dc:dc>