Conţinutul numărului revistei |
Articolul precedent |
Articolul urmator |
275 0 |
SM ISO690:2012 LINES, Straight, COZMA, Dumitru. Darboux integrability and rational reversibility in cubic systems with two invariant. In: Electronic Journal of Differential Equations, 2013, vol. 2013, pp. 1-19. ISSN 1072-6691. |
EXPORT metadate: Google Scholar Crossref CERIF DataCite Dublin Core |
Electronic Journal of Differential Equations | |||||||||
Volumul 2013, i1, 2013 / ISSN 1072-6691 /ISSNe 1550-6150 | |||||||||
|
|||||||||
Pag. 1-19 | |||||||||
|
|||||||||
Descarcă PDF | |||||||||
Rezumat | |||||||||
We find conditions for a singular point O(0,0) of a center or a focus type to be a center, in a cubic differential system with two distinct invariant straight lines. The presence of a center at O(0, 0) is proved by using the method of Darboux integrability and the rational reversibility |
|||||||||
Cuvinte-cheie center problem, Cubic dierential systems, Darboux integrability, invariant straight lines, rational reversibility |
|||||||||
|
Dublin Core Export
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc='http://purl.org/dc/elements/1.1/' xmlns:oai_dc='http://www.openarchives.org/OAI/2.0/oai_dc/' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xsi:schemaLocation='http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd'> <dc:creator>Lines, S.</dc:creator> <dc:creator>Cozma, D.V.</dc:creator> <dc:date>2013-01-27</dc:date> <dc:description xml:lang='en'><p>We find conditions for a singular point O(0,0) of a center or a focus type to be a center, in a cubic differential system with two distinct invariant straight lines. The presence of a center at O(0, 0) is proved by using the method of Darboux integrability and the rational reversibility</p></dc:description> <dc:source>Electronic Journal of Differential Equations () 1-19</dc:source> <dc:subject>center problem</dc:subject> <dc:subject>Cubic dierential systems</dc:subject> <dc:subject>Darboux integrability</dc:subject> <dc:subject>invariant straight lines</dc:subject> <dc:subject>rational reversibility</dc:subject> <dc:title>Darboux integrability and rational reversibility in cubic systems with two invariant</dc:title> <dc:type>info:eu-repo/semantics/article</dc:type> </oai_dc:dc>