Darboux integrability and rational reversibility in cubic systems with two invariant
Close
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
270 0
SM ISO690:2012
LINES, Straight, COZMA, Dumitru. Darboux integrability and rational reversibility in cubic systems with two invariant. In: Electronic Journal of Differential Equations, 2013, vol. 2013, pp. 1-19. ISSN 1072-6691.
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Electronic Journal of Differential Equations
Volumul 2013, i1, 2013 / ISSN 1072-6691 /ISSNe 1550-6150

Darboux integrability and rational reversibility in cubic systems with two invariant


Pag. 1-19

Lines Straight, Cozma Dumitru
 
Tiraspol State University
 
 
Proiecte:
 
Disponibil în IBN: 12 septembrie 2023


Rezumat

We find conditions for a singular point O(0,0) of a center or a focus type to be a center, in a cubic differential system with two distinct invariant straight lines. The presence of a center at O(0, 0) is proved by using the method of Darboux integrability and the rational reversibility

Cuvinte-cheie
center problem, Cubic dierential systems, Darboux integrability, invariant straight lines, rational reversibility

DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xmlns='http://datacite.org/schema/kernel-3' xsi:schemaLocation='http://datacite.org/schema/kernel-3 http://schema.datacite.org/meta/kernel-3/metadata.xsd'>
<creators>
<creator>
<creatorName>Lines, S.</creatorName>
<affiliation>Universitatea de Stat din Tiraspol, Moldova, Republica</affiliation>
</creator>
<creator>
<creatorName>Cozma, D.V.</creatorName>
<affiliation>Universitatea de Stat din Tiraspol, Moldova, Republica</affiliation>
</creator>
</creators>
<titles>
<title xml:lang='en'>Darboux integrability and rational reversibility in cubic systems with two invariant</title>
</titles>
<publisher>Instrumentul Bibliometric National</publisher>
<publicationYear>2013</publicationYear>
<relatedIdentifier relatedIdentifierType='ISSN' relationType='IsPartOf'>1072-6691</relatedIdentifier>
<subjects>
<subject>center problem</subject>
<subject>Cubic dierential systems</subject>
<subject>Darboux integrability</subject>
<subject>invariant straight lines</subject>
<subject>rational reversibility</subject>
</subjects>
<dates>
<date dateType='Issued'>2013-01-27</date>
</dates>
<resourceType resourceTypeGeneral='Text'>Journal article</resourceType>
<descriptions>
<description xml:lang='en' descriptionType='Abstract'><p>We find conditions for a singular point O(0,0) of a center or a focus type to be a center, in a cubic differential system with two distinct invariant straight lines. The presence of a center at O(0, 0) is proved by using the method of Darboux integrability and the rational reversibility</p></description>
</descriptions>
<formats>
<format>application/pdf</format>
</formats>
</resource>