Conţinutul numărului revistei |
Articolul precedent |
Articolul urmator |
270 0 |
SM ISO690:2012 LINES, Straight, COZMA, Dumitru. Darboux integrability and rational reversibility in cubic systems with two invariant. In: Electronic Journal of Differential Equations, 2013, vol. 2013, pp. 1-19. ISSN 1072-6691. |
EXPORT metadate: Google Scholar Crossref CERIF DataCite Dublin Core |
Electronic Journal of Differential Equations | |||||||||
Volumul 2013, i1, 2013 / ISSN 1072-6691 /ISSNe 1550-6150 | |||||||||
|
|||||||||
Pag. 1-19 | |||||||||
|
|||||||||
Descarcă PDF | |||||||||
Rezumat | |||||||||
We find conditions for a singular point O(0,0) of a center or a focus type to be a center, in a cubic differential system with two distinct invariant straight lines. The presence of a center at O(0, 0) is proved by using the method of Darboux integrability and the rational reversibility |
|||||||||
Cuvinte-cheie center problem, Cubic dierential systems, Darboux integrability, invariant straight lines, rational reversibility |
|||||||||
|
DataCite XML Export
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xmlns='http://datacite.org/schema/kernel-3' xsi:schemaLocation='http://datacite.org/schema/kernel-3 http://schema.datacite.org/meta/kernel-3/metadata.xsd'> <creators> <creator> <creatorName>Lines, S.</creatorName> <affiliation>Universitatea de Stat din Tiraspol, Moldova, Republica</affiliation> </creator> <creator> <creatorName>Cozma, D.V.</creatorName> <affiliation>Universitatea de Stat din Tiraspol, Moldova, Republica</affiliation> </creator> </creators> <titles> <title xml:lang='en'>Darboux integrability and rational reversibility in cubic systems with two invariant</title> </titles> <publisher>Instrumentul Bibliometric National</publisher> <publicationYear>2013</publicationYear> <relatedIdentifier relatedIdentifierType='ISSN' relationType='IsPartOf'>1072-6691</relatedIdentifier> <subjects> <subject>center problem</subject> <subject>Cubic dierential systems</subject> <subject>Darboux integrability</subject> <subject>invariant straight lines</subject> <subject>rational reversibility</subject> </subjects> <dates> <date dateType='Issued'>2013-01-27</date> </dates> <resourceType resourceTypeGeneral='Text'>Journal article</resourceType> <descriptions> <description xml:lang='en' descriptionType='Abstract'><p>We find conditions for a singular point O(0,0) of a center or a focus type to be a center, in a cubic differential system with two distinct invariant straight lines. The presence of a center at O(0, 0) is proved by using the method of Darboux integrability and the rational reversibility</p></description> </descriptions> <formats> <format>application/pdf</format> </formats> </resource>