Conţinutul numărului revistei |
Articolul precedent |
Articolul urmator |
276 0 |
SM ISO690:2012 LINES, Straight, COZMA, Dumitru. Darboux integrability and rational reversibility in cubic systems with two invariant. In: Electronic Journal of Differential Equations, 2013, vol. 2013, pp. 1-19. ISSN 1072-6691. |
EXPORT metadate: Google Scholar Crossref CERIF DataCite Dublin Core |
Electronic Journal of Differential Equations | |||||||||
Volumul 2013, i1, 2013 / ISSN 1072-6691 /ISSNe 1550-6150 | |||||||||
|
|||||||||
Pag. 1-19 | |||||||||
|
|||||||||
Descarcă PDF | |||||||||
Rezumat | |||||||||
We find conditions for a singular point O(0,0) of a center or a focus type to be a center, in a cubic differential system with two distinct invariant straight lines. The presence of a center at O(0, 0) is proved by using the method of Darboux integrability and the rational reversibility |
|||||||||
Cuvinte-cheie center problem, Cubic dierential systems, Darboux integrability, invariant straight lines, rational reversibility |
|||||||||
|
Cerif XML Export
<?xml version='1.0' encoding='utf-8'?> <CERIF xmlns='urn:xmlns:org:eurocris:cerif-1.5-1' xsi:schemaLocation='urn:xmlns:org:eurocris:cerif-1.5-1 http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.5/CERIF_1.5_1.xsd' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' release='1.5' date='2012-10-07' sourceDatabase='Output Profile'> <cfResPubl> <cfResPublId>ibn-ResPubl-187124</cfResPublId> <cfResPublDate>2013-01-27</cfResPublDate> <cfStartPage>1</cfStartPage> <cfISSN>1072-6691</cfISSN> <cfURI>https://ibn.idsi.md/ro/vizualizare_articol/187124</cfURI> <cfTitle cfLangCode='EN' cfTrans='o'>Darboux integrability and rational reversibility in cubic systems with two invariant</cfTitle> <cfKeyw cfLangCode='EN' cfTrans='o'>center problem; Cubic dierential systems; Darboux integrability; invariant straight lines; rational reversibility</cfKeyw> <cfAbstr cfLangCode='EN' cfTrans='o'><p>We find conditions for a singular point O(0,0) of a center or a focus type to be a center, in a cubic differential system with two distinct invariant straight lines. The presence of a center at O(0, 0) is proved by using the method of Darboux integrability and the rational reversibility</p></cfAbstr> <cfResPubl_Class> <cfClassId>eda2d9e9-34c5-11e1-b86c-0800200c9a66</cfClassId> <cfClassSchemeId>759af938-34ae-11e1-b86c-0800200c9a66</cfClassSchemeId> <cfStartDate>2013-01-27T24:00:00</cfStartDate> </cfResPubl_Class> <cfResPubl_Class> <cfClassId>e601872f-4b7e-4d88-929f-7df027b226c9</cfClassId> <cfClassSchemeId>40e90e2f-446d-460a-98e5-5dce57550c48</cfClassSchemeId> <cfStartDate>2013-01-27T24:00:00</cfStartDate> </cfResPubl_Class> <cfPers_ResPubl> <cfPersId>ibn-person-111392</cfPersId> <cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId> <cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId> <cfStartDate>2013-01-27T24:00:00</cfStartDate> </cfPers_ResPubl> <cfPers_ResPubl> <cfPersId>ibn-person-27550</cfPersId> <cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId> <cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId> <cfStartDate>2013-01-27T24:00:00</cfStartDate> </cfPers_ResPubl> </cfResPubl> <cfPers> <cfPersId>ibn-Pers-111392</cfPersId> <cfPersName_Pers> <cfPersNameId>ibn-PersName-111392-3</cfPersNameId> <cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId> <cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId> <cfStartDate>2013-01-27T24:00:00</cfStartDate> <cfFamilyNames>Lines</cfFamilyNames> <cfFirstNames>Straight</cfFirstNames> </cfPersName_Pers> </cfPers> <cfPers> <cfPersId>ibn-Pers-27550</cfPersId> <cfPersName_Pers> <cfPersNameId>ibn-PersName-27550-3</cfPersNameId> <cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId> <cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId> <cfStartDate>2013-01-27T24:00:00</cfStartDate> <cfFamilyNames>Cozma</cfFamilyNames> <cfFirstNames>Dumitru</cfFirstNames> </cfPersName_Pers> </cfPers> </CERIF>