Darboux integrability and rational reversibility in cubic systems with two invariant
Close
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
276 0
SM ISO690:2012
LINES, Straight, COZMA, Dumitru. Darboux integrability and rational reversibility in cubic systems with two invariant. In: Electronic Journal of Differential Equations, 2013, vol. 2013, pp. 1-19. ISSN 1072-6691.
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Electronic Journal of Differential Equations
Volumul 2013, i1, 2013 / ISSN 1072-6691 /ISSNe 1550-6150

Darboux integrability and rational reversibility in cubic systems with two invariant


Pag. 1-19

Lines Straight, Cozma Dumitru
 
Tiraspol State University
 
 
Proiecte:
 
Disponibil în IBN: 12 septembrie 2023


Rezumat

We find conditions for a singular point O(0,0) of a center or a focus type to be a center, in a cubic differential system with two distinct invariant straight lines. The presence of a center at O(0, 0) is proved by using the method of Darboux integrability and the rational reversibility

Cuvinte-cheie
center problem, Cubic dierential systems, Darboux integrability, invariant straight lines, rational reversibility

Cerif XML Export

<?xml version='1.0' encoding='utf-8'?>
<CERIF xmlns='urn:xmlns:org:eurocris:cerif-1.5-1' xsi:schemaLocation='urn:xmlns:org:eurocris:cerif-1.5-1 http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.5/CERIF_1.5_1.xsd' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' release='1.5' date='2012-10-07' sourceDatabase='Output Profile'>
<cfResPubl>
<cfResPublId>ibn-ResPubl-187124</cfResPublId>
<cfResPublDate>2013-01-27</cfResPublDate>
<cfStartPage>1</cfStartPage>
<cfISSN>1072-6691</cfISSN>
<cfURI>https://ibn.idsi.md/ro/vizualizare_articol/187124</cfURI>
<cfTitle cfLangCode='EN' cfTrans='o'>Darboux integrability and rational reversibility in cubic systems with two invariant</cfTitle>
<cfKeyw cfLangCode='EN' cfTrans='o'>center problem; Cubic dierential systems; Darboux integrability; invariant straight lines; rational reversibility</cfKeyw>
<cfAbstr cfLangCode='EN' cfTrans='o'><p>We find conditions for a singular point O(0,0) of a center or a focus type to be a center, in a cubic differential system with two distinct invariant straight lines. The presence of a center at O(0, 0) is proved by using the method of Darboux integrability and the rational reversibility</p></cfAbstr>
<cfResPubl_Class>
<cfClassId>eda2d9e9-34c5-11e1-b86c-0800200c9a66</cfClassId>
<cfClassSchemeId>759af938-34ae-11e1-b86c-0800200c9a66</cfClassSchemeId>
<cfStartDate>2013-01-27T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfResPubl_Class>
<cfClassId>e601872f-4b7e-4d88-929f-7df027b226c9</cfClassId>
<cfClassSchemeId>40e90e2f-446d-460a-98e5-5dce57550c48</cfClassSchemeId>
<cfStartDate>2013-01-27T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfPers_ResPubl>
<cfPersId>ibn-person-111392</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2013-01-27T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-27550</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2013-01-27T24:00:00</cfStartDate>
</cfPers_ResPubl>
</cfResPubl>
<cfPers>
<cfPersId>ibn-Pers-111392</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-111392-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2013-01-27T24:00:00</cfStartDate>
<cfFamilyNames>Lines</cfFamilyNames>
<cfFirstNames>Straight</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-27550</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-27550-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2013-01-27T24:00:00</cfStartDate>
<cfFamilyNames>Cozma</cfFamilyNames>
<cfFirstNames>Dumitru</cfFirstNames>
</cfPersName_Pers>
</cfPers>
</CERIF>