Conţinutul numărului revistei |
Articolul precedent |
Articolul urmator |
452 7 |
Ultima descărcare din IBN: 2023-10-21 12:10 |
Căutarea după subiecte similare conform CZU |
517.968 (17) |
Differential equations. Integral equations. Other functional equations. Finite differences. Calculus of variations. Functional analysis (246) |
SM ISO690:2012 DREGLEA, Aliona, SIDOROV, Nikolay, SIDOROV, Denis. Construction of solutions of integral equations with Stieltjes functionals and bifurcation parameters. In: Acta et commentationes (Ştiinţe Exacte și ale Naturii), 2021, nr. 2(12), pp. 43-49. ISSN 2537-6284. DOI: https://doi.org/10.36120/2587-3644.v12i2.43-49 |
EXPORT metadate: Google Scholar Crossref CERIF DataCite Dublin Core |
Acta et commentationes (Ştiinţe Exacte și ale Naturii) | |||||||||
Numărul 2(12) / 2021 / ISSN 2537-6284 /ISSNe 2587-3644 | |||||||||
|
|||||||||
DOI:https://doi.org/10.36120/2587-3644.v12i2.43-49 | |||||||||
CZU: 517.968 | |||||||||
MSC 2010: 45D05, 37G10. | |||||||||
Pag. 43-49 | |||||||||
|
|||||||||
Descarcă PDF | |||||||||
Rezumat | |||||||||
The nonlinearVolterra integral equations with loads on the desired solution are studied. Loads are given using the Stieltjes integrals. The equations contain a parameter, for any value of which the equation has a trivial solution. The necessary and sufficient conditions on the values of the parameter are derived in the neighborhood where the equation has nontrivial real solutions. |
|||||||||
Cuvinte-cheie nonlinear Volterra equations, Newton–Puiseux decompositions, bifurcation points, asymptotics, Stieltjes integral, loads, ecuatii Volterra neliniare, decompozitia Newton–Puiseux, puncte de bifurcatie, asimptotic, integrala Stieltjes, sarcini |
|||||||||
|
Dublin Core Export
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc='http://purl.org/dc/elements/1.1/' xmlns:oai_dc='http://www.openarchives.org/OAI/2.0/oai_dc/' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xsi:schemaLocation='http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd'> <dc:creator>Dreglea, A.I.</dc:creator> <dc:creator>Sidorov, N.A.</dc:creator> <dc:creator>Sidorov, D.</dc:creator> <dc:date>2021-12-29</dc:date> <dc:description xml:lang='en'><p>The nonlinearVolterra integral equations with loads on the desired solution are studied. Loads are given using the Stieltjes integrals. The equations contain a parameter, for any value of which the equation has a trivial solution. The necessary and sufficient conditions on the values of the parameter are derived in the neighborhood where the equation has nontrivial real solutions.</p></dc:description> <dc:description xml:lang='ro'><p>În lucrare sunt studiate ecuat,iile integrale neliniare Volterra cu sarcini pe solut,ia dorita. Sarcinile sunt date folosind integralele Stieltjes. Ecuat,iile cont,in un parametru, pentru oricare valoare a caruia ecuat,ia are o solut,ie banala. Condit,iile necesare s, i suficiente asupra valorilor parametrului sunt obtinute în vecinatatea în care ecuatia are solutii reale nebanale.</p></dc:description> <dc:identifier>10.36120/2587-3644.v12i2.43-49</dc:identifier> <dc:source>Acta et commentationes (Ştiinţe Exacte și ale Naturii) 12 (2) 43-49</dc:source> <dc:subject>nonlinear Volterra equations</dc:subject> <dc:subject>Newton–Puiseux decompositions</dc:subject> <dc:subject>bifurcation points</dc:subject> <dc:subject>asymptotics</dc:subject> <dc:subject>Stieltjes integral</dc:subject> <dc:subject>loads</dc:subject> <dc:subject>ecuatii Volterra neliniare</dc:subject> <dc:subject>decompozitia Newton–Puiseux</dc:subject> <dc:subject>puncte de bifurcatie</dc:subject> <dc:subject>asimptotic</dc:subject> <dc:subject>integrala Stieltjes</dc:subject> <dc:subject>sarcini</dc:subject> <dc:title>Construction of solutions of integral equations with Stieltjes functionals and bifurcation parameters</dc:title> <dc:type>info:eu-repo/semantics/article</dc:type> </oai_dc:dc>