Articolul precedent |
Articolul urmator |
692 10 |
Ultima descărcare din IBN: 2024-08-18 13:55 |
Căutarea după subiecte similare conform CZU |
511.11 (5) |
Number theory (39) |
SM ISO690:2012 GUȘAN, Veronica, GAŞIŢOI, Natalia. Numere complexe. Planul complex. Mulțimea lui Mandelbrot. In: Interuniversitaria, 8 octombrie 2020, Bălți. Bălți, Republica Moldova: Universitatea de Stat „Alecu Russo" din Bălţi, 2020, Ediția 16, pp. 328-332. ISBN 978-9975-50-248-1. |
EXPORT metadate: Google Scholar Crossref CERIF DataCite Dublin Core |
Interuniversitaria Ediția 16, 2020 |
|||||||||
Colocviul "Interuniversitaria" Bălți, Moldova, 8 octombrie 2020 | |||||||||
|
|||||||||
CZU: 511.11 | |||||||||
Pag. 328-332 | |||||||||
|
|||||||||
Descarcă PDF | |||||||||
Rezumat | |||||||||
In this article we try to answer a few questions. Where did the complex numbers start from? How are complex numbers defined? Where and how do we represent complex numbers? What is the Mandelbrot set? We know that the multitude of complex numbers is fantastic, but it is even more interesting that with the help of these numbers, ama-zing images can appear on the complex plane. Thanks to Gaston Julia and Benoît Man-delbrot, today it is possible to visualize a fractal set, which being colored according to an algorithm, we enjoy the eyes with extremely beautiful images. Mandelbrot's set, in addition to the interesting features it possesses, also has an aesthetic value, which cannot be denied. |
|||||||||
Cuvinte-cheie complex numbers, complex plane, Mandelbrot set, fractal |
|||||||||
|
DataCite XML Export
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xmlns='http://datacite.org/schema/kernel-3' xsi:schemaLocation='http://datacite.org/schema/kernel-3 http://schema.datacite.org/meta/kernel-3/metadata.xsd'> <creators> <creator> <creatorName>Gușan, V.</creatorName> <affiliation>Universitatea de Stat „Alecu Russo” din Bălţi, Moldova, Republica</affiliation> </creator> <creator> <creatorName>Gaşiţoi, N.</creatorName> <affiliation>Universitatea de Stat „Alecu Russo” din Bălţi, Moldova, Republica</affiliation> </creator> </creators> <titles> <title xml:lang='ro'>Numere complexe. Planul complex. Mulțimea lui Mandelbrot</title> </titles> <publisher>Instrumentul Bibliometric National</publisher> <publicationYear>2020</publicationYear> <relatedIdentifier relatedIdentifierType='ISBN' relationType='IsPartOf'>978-9975-50-248-1</relatedIdentifier> <subjects> <subject>complex numbers</subject> <subject>complex plane</subject> <subject>Mandelbrot set</subject> <subject>fractal</subject> <subject schemeURI='http://udcdata.info/' subjectScheme='UDC'>511.11</subject> </subjects> <dates> <date dateType='Issued'>2020</date> </dates> <resourceType resourceTypeGeneral='Text'>Conference Paper</resourceType> <descriptions> <description xml:lang='en' descriptionType='Abstract'><p>In this article we try to answer a few questions. Where did the complex numbers start from? How are complex numbers defined? Where and how do we represent complex numbers? What is the Mandelbrot set? We know that the multitude of complex numbers is fantastic, but it is even more interesting that with the help of these numbers, ama-zing images can appear on the complex plane. Thanks to Gaston Julia and Benoît Man-delbrot, today it is possible to visualize a fractal set, which being colored according to an algorithm, we enjoy the eyes with extremely beautiful images. Mandelbrot's set, in addition to the interesting features it possesses, also has an aesthetic value, which cannot be denied.</p></description> </descriptions> <formats> <format>application/pdf</format> </formats> </resource>