Conţinutul numărului revistei |
Articolul precedent |
Articolul urmator |
579 9 |
Ultima descărcare din IBN: 2023-10-02 10:03 |
Căutarea după subiecte similare conform CZU |
512.552 (14) |
Algebra (416) |
SM ISO690:2012 DANCHEV, Peter. Commutative Weakly Tripotent Group Rings. In: Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2020, nr. 2(93), pp. 24-29. ISSN 1024-7696. |
EXPORT metadate: Google Scholar Crossref CERIF DataCite Dublin Core |
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica | |||||||||
Numărul 2(93) / 2020 / ISSN 1024-7696 /ISSNe 2587-4322 | |||||||||
|
|||||||||
CZU: 512.552 | |||||||||
MSC 2010: 16S34, 16U99, 20C07. | |||||||||
Pag. 24-29 | |||||||||
|
|||||||||
Descarcă PDF | |||||||||
Rezumat | |||||||||
Very recently, Breaz and Cˆımpean introduced and examined in Bull. Korean Math. Soc. (2018) the class of so-called weakly tripotent rings as those rings R whose elements satisfy at leat one of the equations x3 = x or (1 − x)3 = 1 − x. These rings are generally non-commutative. We here obtain a criterion when the commutative group ring RG is weakly tripotent in terms only of a ring R and of a group G plus their sections. Actually, we also show that these weakly tripotent rings are strongly invo-clean rings in the sense of Danchev in Commun. Korean Math. Soc. (2017). Thereby, our established criterion somewhat strengthens previous results on commutative strongly invo-clean group rings, proved by the present author in Univ. J. Math. & Math. Sci. (2018). Moreover, this criterion helps us to construct a commutative strongly invo-clean ring of characteristic 2 which is not weakly tripotent, thus showing that these two ring classes are different. |
|||||||||
Cuvinte-cheie Tripotent rings, weakly tripotent rings, strongly invo-clean rings, Group rings |
|||||||||
|
Google Scholar Export
<meta name="citation_title" content="Commutative Weakly Tripotent Group Rings"> <meta name="citation_author" content="Danchev Peter"> <meta name="citation_publication_date" content="2020/09/18"> <meta name="citation_journal_title" content="Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica"> <meta name="citation_volume" content="93"> <meta name="citation_issue" content="2"> <meta name="citation_firstpage" content="24"> <meta name="citation_lastpage" content="29"> <meta name="citation_pdf_url" content="https://ibn.idsi.md/sites/default/files/imag_file/y2020-n2-%28pp24-29%29.pdf">