Conţinutul numărului revistei |
Articolul precedent |
Articolul urmator |
533 2 |
Ultima descărcare din IBN: 2020-12-03 13:18 |
Căutarea după subiecte similare conform CZU |
517.5+517.98 (2) |
Analysis (306) |
Differential equations. Integral equations. Other functional equations. Finite differences. Calculus of variations. Functional analysis (246) |
SM ISO690:2012 DRAGOMIR, Silvestru Sever. Inequalities of Hermite-Hadamard Type for K-Bounded Modulus Convex Complex Functions. In: Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2020, nr. 2(93), pp. 11-23. ISSN 1024-7696. |
EXPORT metadate: Google Scholar Crossref CERIF DataCite Dublin Core |
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica | ||||||||
Numărul 2(93) / 2020 / ISSN 1024-7696 /ISSNe 2587-4322 | ||||||||
|
||||||||
CZU: 517.5+517.98 | ||||||||
MSC 2010: 26D15, 26D10, 30A10, 30A86. | ||||||||
Pag. 11-23 | ||||||||
|
||||||||
Descarcă PDF | ||||||||
Rezumat | ||||||||
Let D ⊂ C be a convex domain of complex numbers and K > 0. We say that the function f : D ⊂ C → C is called K-bounded modulus convex, for the given K > 0, if it satisfies the condition |(1 − ) f (x) + f (y) − f ((1 − ) x + y)| ≤ 1 2 K (1 − ) |x − y|2 for any x, y ∈ D and ∈ [0, 1] . In this paper we establish some new HermiteHadamard type inequalities for the complex integral on , a smooth path from C, and K-bounded modulus convex functions. Some examples for integrals on segments and circular paths are also given. |
||||||||
Cuvinte-cheie complex integral, Continuous functions, Holomorphic functions, Hermite-Hadamard inequality, Midpoint inequality, Trapezoid inequality |
||||||||
|
Google Scholar Export
<meta name="citation_title" content="Inequalities of Hermite-Hadamard Type for K-Bounded Modulus Convex Complex Functions"> <meta name="citation_author" content="Dragomir Silvestru Sever"> <meta name="citation_publication_date" content="2020/09/18"> <meta name="citation_journal_title" content="Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica"> <meta name="citation_volume" content="93"> <meta name="citation_issue" content="2"> <meta name="citation_firstpage" content="11"> <meta name="citation_lastpage" content="23"> <meta name="citation_pdf_url" content="https://ibn.idsi.md/sites/default/files/imag_file/y2020-n2-%28pp11-23%29.pdf">