Proximity effect in [Nb(1.5 nm)/Fe(x)]10/Nb(50 nm) superconductor/ferromagnet heterostructures
Close
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
639 0
SM ISO690:2012
KHAYDUKOV, Yu N., PUTTER, Sabine, GUASCO, Laura, MORARI, Roman, KIM, Gideok, KELLER, Thomas, SIDORENKO, Anatolie, KEIMER, Bernhard. Proximity effect in [Nb(1.5 nm)/Fe(x)]10/Nb(50 nm) superconductor/ferromagnet heterostructures. In: Beilstein Journal of Nanotechnology, 2020, vol. 11, pp. 1254-1263. ISSN 2190-4286. DOI: https://doi.org/10.3762/bjnano.11.109
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Beilstein Journal of Nanotechnology
Volumul 11 / 2020 / ISSN 2190-4286

Proximity effect in [Nb(1.5 nm)/Fe(x)]10/Nb(50 nm) superconductor/ferromagnet heterostructures

DOI:https://doi.org/10.3762/bjnano.11.109

Pag. 1254-1263

Khaydukov Yu N.123, Putter Sabine2, Guasco Laura1, Morari Roman4, Kim Gideok1, Keller Thomas12, Sidorenko Anatolie4, Keimer Bernhard1
 
1 Max Planck Institute for Solid State Research,
2 Outstation at Heinz Maier-Leibnitz Zentrum (MLZ),
3 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University,
4 Institute of the Electronic Engineering and Nanotechnologies "D. Ghitu"
 
 
Disponibil în IBN: 14 septembrie 2020


Rezumat

We have investigated the structural, magnetic and superconduction properties of [Nb(1.5 nm)/Fe(x)]10 superlattices deposited on a thick Nb(50 nm) layer. Our investigation showed that the Nb(50 nm) layer grows epitaxially at 800 °C on the Al2O3(1-102) substrate. Samples grown at this condition possess a high residual resistivity ratio of 15-20. By using neutron reflectometry we show that Fe/Nb superlattices with x < 4 nm form a depth-modulated FeNb alloy with concentration of iron varying between 60% and 90%. This alloy has weak ferromagnetic properties. The proximity of this weak ferromagnetic layer to a thick superconductor leads to an intermediate phase that is characterized by a suppressed but still finite resistance of structure in a temperature interval of about 1 K below the superconducting transition of thick Nb. By increasing the thickness of the Fe layer to x = 4 nm the intermediate phase disappears. We attribute the intermediate state to proximity induced non-homogeneous superconductivity in the structure.

Cuvinte-cheie
Ferromagnet, Iron (Fe), Mixed state, Neutron reflectometry, Niobium (Nb), Proximity effects, Superconductor

DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xmlns='http://datacite.org/schema/kernel-3' xsi:schemaLocation='http://datacite.org/schema/kernel-3 http://schema.datacite.org/meta/kernel-3/metadata.xsd'>
<identifier identifierType='DOI'>10.3762/bjnano.11.109</identifier>
<creators>
<creator>
<creatorName>Khaydukov, Y.</creatorName>
<affiliation>Max Planck Institute for Solid State Research, Germania</affiliation>
</creator>
<creator>
<creatorName>Putter, S.</creatorName>
<affiliation>Outstation at Heinz Maier-Leibnitz Zentrum (MLZ), Germania</affiliation>
</creator>
<creator>
<creatorName>Guasco, L.</creatorName>
<affiliation>Max Planck Institute for Solid State Research, Germania</affiliation>
</creator>
<creator>
<creatorName>Morari, R.A.</creatorName>
<affiliation>Institutul de Inginerie Electronică şi Nanotehnologii "D. Ghiţu", Moldova, Republica</affiliation>
</creator>
<creator>
<creatorName>Kim, G.</creatorName>
<affiliation>Max Planck Institute for Solid State Research, Germania</affiliation>
</creator>
<creator>
<creatorName>Keller, T.</creatorName>
<affiliation>Max Planck Institute for Solid State Research, Germania</affiliation>
</creator>
<creator>
<creatorName>Sidorenko, A.S.</creatorName>
<affiliation>Institutul de Inginerie Electronică şi Nanotehnologii "D. Ghiţu", Moldova, Republica</affiliation>
</creator>
<creator>
<creatorName>Keimer, B.</creatorName>
<affiliation>Max Planck Institute for Solid State Research, Germania</affiliation>
</creator>
</creators>
<titles>
<title xml:lang='en'>Proximity effect in [Nb(1.5 nm)/Fe(x)]10/Nb(50 nm) superconductor/ferromagnet heterostructures</title>
</titles>
<publisher>Instrumentul Bibliometric National</publisher>
<publicationYear>2020</publicationYear>
<relatedIdentifier relatedIdentifierType='ISSN' relationType='IsPartOf'>2190-4286</relatedIdentifier>
<subjects>
<subject>Ferromagnet</subject>
<subject>Iron (Fe)</subject>
<subject>Mixed state</subject>
<subject>Neutron reflectometry</subject>
<subject>Niobium (Nb)</subject>
<subject>Proximity effects</subject>
<subject>Superconductor</subject>
</subjects>
<dates>
<date dateType='Issued'>2020-04-01</date>
</dates>
<resourceType resourceTypeGeneral='Text'>Journal article</resourceType>
<descriptions>
<description xml:lang='en' descriptionType='Abstract'><p>We have investigated the structural, magnetic and superconduction properties of [Nb(1.5 nm)/Fe(x)]<sub>10</sub>&nbsp;superlattices deposited on a thick Nb(50 nm) layer. Our investigation showed that the Nb(50 nm) layer grows epitaxially at 800 &deg;C on the Al<sub>2</sub>O<sub>3</sub>(1-102) substrate. Samples grown at this condition possess a high residual resistivity ratio of 15-20. By using neutron reflectometry we show that Fe/Nb superlattices with x &lt; 4 nm form a depth-modulated FeNb alloy with concentration of iron varying between 60% and 90%. This alloy has weak ferromagnetic properties. The proximity of this weak ferromagnetic layer to a thick superconductor leads to an intermediate phase that is characterized by a suppressed but still finite resistance of structure in a temperature interval of about 1 K below the superconducting transition of thick Nb. By increasing the thickness of the Fe layer to x = 4 nm the intermediate phase disappears. We attribute the intermediate state to proximity induced non-homogeneous superconductivity in the structure.</p></description>
</descriptions>
<formats>
<format>application/pdf</format>
</formats>
</resource>