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Abstract. In this work we summarize some well-known criteria for the nonexistence
of periodic orbits in planar differential systems. Additionally we present two new
criteria and illustrate with examples these criteria.
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1 Introduction and statement of the main results

We consider a planar differential system that we write as

dx

dt
= ẋ = P (x, y),

dy

dt
= ẏ = Q(x, y), (1)

where P (x, y) and Q(x, y) are C1 real functions in the variables x and y, and t is
the independent variable.

The objective of this note is double, first we recall the more well-known results
for the nonexistence of periodic orbits of a differential system (1). Second we provide
two new criteria for the nonexistence of periodic orbits of system (1).

As far as we know one of the first criterium of nonexistence is the following one
due to Poincaré.

Theorem 1 (Poincaré Method of Tangential Curves). Consider a family of curves
F (x, y) = C, where F (x, y) is continuously differentiable. If in a region R the
quantity

dF

dt
= P

∂F

∂x
+ Q

∂F

∂y

has constant sign, and the curve

P
∂F

∂x
+ Q

∂F

∂y
= 0

(which represents the locus of points of contact between curves in the family and
the trajectories of (1), and is called a tangential curve) does not contain a whole
trajectory of (1) or any closed branch, then system (1) does not possess a periodic
orbit which is entirely contained in R.
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For a proof of Theorem 1 see either Theorem 1.9 of [8], or Proposition 7.9 of [3].

Theorem 2 (Bendixson’s Theorem). Assume that the divergence function ∂P/∂x+
∂Q/∂y of system (1) has constant sign in a simply connected region R, and is not
identically zero on any subregion of R. Then system (1) does not have a periodic
orbit which lies entirely in R.

For a proof of Theorem 2 see either Theorem 1.10 of [8], or Section 3.9 of [6], or
Proposition 1.133 of [2], or Theorem 7.10 of [3].

Theorem 3 (Dulac’s Theorem). If for system (1) there exists a C1 function B(x, y)
in a simply connected region R such that ∂(BP )/∂x + ∂(BQ)/∂y has constant sign
and is not identically zero in any subregion, then this system (1) does not have a
periodic orbit lying entirely in R.

For a proof of Theorem 3 see either Theorem 1.12 of [8], or Theorem 4.8 of [9],
or Section 3.9 of [6], or Exercise 1.136 of [2], or Theorem 7.12 of [3].

The well-know Liénard differential equation [4]

ẍ + f(x)ẋ + g(x) = 0,

where f(x) and g(x) are C1 functions in the open subset R of R
2, can be written as

the following first order differential system

ẋ = y, ẏ = −g(x) − f(x)y. (2)

Theorem 4 (Chen–Yang–Zhang–Zhang’s Theorem). Assume that the differential
system (2) satisfies the following conditions:

(i) g(x) = −g(−x) and xg(x) > 0 if x 6= 0;

(ii) f(x) = f1(x) + f2(x) with f1(x) = f1(−x), f2(x) = −f2(−x) and f1(x) 6= 0.

Then this system (2) has no periodic orbits in R.

Theorem 4 is a particular case of Theorem 1 of [1].
As far as we know the next two criteria for the nonexistence of periodic orbits

are new.
Let f(x, y) = 0 be a curve, then a point (x0, y0) of this curve is a contact point

with system (1) if it satisfies (P∂f/∂x + Q∂f/∂y)(x0, y0) = 0.

Theorem 5 (Transversal divergence criterium). Let D(x, y) = ∂P/∂x + ∂Q/∂y be
the divergence of system (1). If the curve D(x, y) = 0 has no contact points of even
multiplicity with the system (1), then this system has no periodic orbits.

The proof of Theorem 5 is given in Section 2.
Working in polar coordinates (r, θ) where x = r cos θ and y = r sin θ system (1)

writes

ṙ =
xP + yQ
√

x2 + y2

∣

∣

∣

(x,y)=(r cos θ,r sin θ)
, θ̇ =

xQ − yP

x2 + y2

∣

∣

∣

(x,y)=(r cos θ,r sin θ)
.
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Theorem 6 (Angular velocity criterium). Assume that the origin of coordinates
is an equilibrium point of a system (1), and that the component γ of the curve
xQ− yP = 0 passes through the origin of coordinates and locally on one side of this
curve we have xQ − yP > 0 and on the other side xQ − yP < 0. Then system (1)
has no periodic orbits surrounding the origin crossing the component γ at a point
with odd mutiplicity.

Theorem 6 is proved in Section 3.

2 Proof of Theorem 5

By the Bendixson Theorem any periodic orbit of system (1) must intersect the
curve D(x, y) = 0. But under the assumptions of Theorem 5 the flow of this system
is transversal at all the point of the curve except at its possible contact points of
odd multiplicity, but also at these points the flow crosses the curve D(x, y) = 0.
Hence clearly a periodic orbit cannot intersect the divergence curve D(x, y) = 0 and
consequently it does not exists. This completes the proof of Theorem 5.

Now we present an application of Theorem 5. We consider the Selkov-Higgins
system which is relevant in the study of the glycolysis. This system when one of its
parameters is equal to 2 writes

ẋ = 1 − xy2 = P (x, y), ẏ = ay(xy − 1) = Q(x, y). (3)

The divergence of this system is D(x, y) = −a + 2axy − y2. Now we study the
transversality of the flow of system (1) on the curve D(x, y) = 0, that is

p(y) :=
∂D

∂x
P +

∂D

∂x
Q

∣

∣

∣

D=0
=

1

2
(−a2 + 4ay − 3y4).

Using the formulas of Lu Yang [7] for this quartic polynomial we have

D2 = 0, D3 = −2592a2, D4 = 6912a4(a2 − 9).

When |a| > 3 then D4 > 0 and D3 ≤ 0 or D2 ≤ 0, and the polynomial p(y) has no
real roots. Consequently by Theorem 5 system (3) has no periodic orbits.

If a = ±3 then D4 = 0 and D3 < 0, and the polynomial p(y) has one double real
root. So system (3) again by Theorem 5 has no periodic orbits.

If a = 0 then D4 = D3 = D2 = 0 and the polynomial p(y) has one quadruple
real root. Hence by Theorem 5 system (3) has no periodic orbits.

Finally if a ∈ (−3, 0) ∪ (0, 3) then D4 < 0, and the polynomial p(y) has two
real simple roots. In this case we cannot apply Theorem 5 and system (3) could
have periodic orbits for some of these values of a. Indeed in the work [5] values of
a ∈ (−3, 0) ∪ (0, 3) are given for which system (3) has periodic orbits.
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3 Proof of Theorem 6

Assume that there exists a periodic orbit Γ surrounding the origin which crosses
the component γ at a point p with odd multiplicity. Then on this periodic orbit Γ in
a neighborhood of p and on one side of γ we have θ̇ > 0 and on the other side θ̇ < 0,
this provides a contradiction because in a small neighborhood of p the periodic orbit
must be either θ̇ ≥ 0, or θ̇ ≤ 0. This completes the proof of Theorem 6.

Now we present one application of Theorem 6. Consider the differential system

ẋ = −x(2 + f(x, y)) + y = P (x, y), ẏ = −y(2 + f(x, y)) + x = Q(x, y), (4)

where the C1 function f is such that it, its first and second derivatives vanish at the
origin of coordinates. Then the origin of coordinates is a stable node with eigenvalues
−1 and −3, and xQ − yP = x2 − y2, and consequently θ̇ = 0 is formed by the two
straight lines y = ±x. So by Theorem 6 system (4) cannot have periodic orbits
surrounding the origin.
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912/946–954.

[5] LLibre, J., Mousavi, M. Phase portraits of the Higgins-Selkov system, Discrete Contin. Dyn.
Syst. 27 (2022), 245–256.

[6] Perko, L. Differential equations and dynamical systems, third edition. Texts in Applied Math-
ematics, 7. Springer-Verlag, New York, 2001.

[7] Yang. L. Recent advances on determining the number of real roots of parametric polynomials,
J. Symbolic Comput. 28 (1999), 225–242.



CRITERIA FOR THE NONEXISTENCE OF PERIODIC ORBITS 7

[8] Ye, Yan Qian et al. Theory of limit cycles, Translations of Mathematical Monographs, 66.
American Mathematical Society, Providence, RI, 1986.

[9] Zhang, Zhi Fen et al. Qualitative theory of differential equations, Translations of Mathematical
Monographs, 101. American Mathematical Society, Providence, RI, 1992.

Jaume Giné
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Some families of quadratic systems

with at most one limit cycle

Jaume Llibre

Abstract. The work of Chicone and Shafer published in 1982 together with the
work of Bamon published in 1986 proved that any polynomial differential system of
degree two has finitely many limit cycles. But the problem remains open of providing
a uniform upper bound for the maximum number of limit cycles that a polynomial
differential system of degree two can have, i.e. the second part of the 16th Hilbert
problem restricted to the polynomial differential systems of degree two remains open.
Here we present six subclasses of polynomial differential systems of degree two for
which we can prove that an upper bound for their maximum number of limit cycles
is one.

Mathematics subject classification: 34C05.
Keywords and phrases: quadratic systems, 16th Hilbert problem, limit cycles.

1 Introduction and statement of the main results

We deal with polynomial differential systems in R
2 of the form

dx

dt
= ẋ = P (x, y),

dy

dt
= ẏ = Q(x, y).

The degree of such a polynomial system is the maximum of the degrees of the
polynomials P and Q. In what follows the polynomial differential systems of degree
2 are simply called quadratic systems.

We recall that a limit cycle of a differential system is a periodic orbit of this
system isolated in the set of all periodic orbits of the system. As far as we know the
notion of limit cycle appeared in the work of Poincaré [14] in the year 1885.

At the Second International Congress of Mathematicians, held in Paris in 1900,
Hilbert [8] proposed his famous 16th problem, whose second part essentially says:
Find an upper bound for the maximum number of limit cycles that the polynomial
differential systems in R

2 of a given degree can have.
The works of Chicone and Shafer [5] and of Bamon [1] proved that any polyno-

mial differential system of degree 2 has finitely many limit cycles. This result uses
previous results of Ilyashenko [9]. Up to now the second part of the 16th Hilbert
problem remains unsolved, also for the quadratic systems.

In 1957 Petrovskii and Landis [12] claimed that the polynomial differential sys-
tems of degree n = 2 have at most 3 limit cycles. Soon (in 1959) a gap was found
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in the arguments of Petrovskii and Landis, see [13]. Later, Lan Sun Chen and Ming
Shu Wang [3] in 1979, and Songling Shi [16] in 1982, provided the first quadratic
systems having 4 limit cycles, and up to now 4 is the maximum number of limit
cycles known for a quadratic system.

We recall the following three well known properties of quadratic systems.

(a) In the region limited by a periodic orbit of a quadratic system there is a unique
equilibrium point, see Theorem 2 of Coppel [6], or Theorem 2.8 of Chicone and
Jinghuang [4].

(b) A periodic orbit of a quadratic system surrounds a focus or a center, proved
by Vorob’ev [17], see also Theorem 6 of Coppel [6].

(d) Quadratic systems having a center have no limit cycles, see Vulpe [18] and
Schlomiuk [15].

From these three properties if follows that if a quadratic system has a limit cycle
this must surround a focus.

Let O be a focus or a center of a quadratic system, without loss of generality
we can assume that O is localized at the origin of coordinates, otherwise we do
a translation sending O to the origin of coordinates. Kaptein [10, 11] proved that
any quadratic system having a focus or a center at the origin of coordinates can be
written as (see also Bautin [2])

ẋ = λ1x − y − λ3x
2 + (2λ2 + λ5)xy + λ6y

2,
ẏ = x + λ1y + λ2x

2 + (2λ3 + λ4)xy − λ2y
2.

(1)

In order to avoid subindexes we denote

λ1 = λ, λ2 = a, λ3 = b, λ4 = c, λ5 = d, λ6 = e.

Then system (1) becomes

ẋ = λx − y − bx2 + (2a + d)xy + ey2,
ẏ = x + λy + ax2 + (2b + c)xy − ay2.

(2)

The goal of this paper is to give conditions on the parameters of system (2) for
the presence of a maximum of one limit cycle for the system surrounding the origin.
For this we rely on the paper [7] where a theorem is stated giving conditions for
having at most three limit cycles in an Abel differential equation.

A good tool for studying the possible limit cycles surrounding the origin O of
the quadratic system (2) is to write this quadratic system in polar coordinates (r, θ),
where x = r cos θ, y = r sin θ. Then system (2) becomes

ṙ = λr + f(θ)r2,

θ̇ = 1 + g(θ)r,
(3)
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where

f(θ) = −a sin3 θ + (2b + c + 3) sin2 θ cos θ + (3a + d) sin θ cos2 θ − b cos3 θ,
g(θ) = −3 sin3 θ − (3a + d) sin2 θ cos θ + (3b + c) sin θ cos2 θ + a cos3 θ.

(4)

Note that f(θ) and g(θ) are homogeneous trigonometric polynomials of degree three.
We define the polynomials

F (z) = −az3 + (2b + c + 3)z2 + (3a + d)z − b,
G(z) = −3z3 − (3a + d)z2 + (3b + c)z + a,

note that f(θ) = cos3 θF (tan θ) and g(θ) = cos3 θG(tan θ).
Here first we classify all quadratic systems whose polynomial G(z)(λG(z)−F (z))

satisfies the following two properties:
(P1) it has degree six, and
(P2) for all z ∈ R the value of G(z)(λG(z) − F (z)) is either ≥ 0, or = 0, or ≤ 0.

Theorem 1. Every quadratic system (2) satisfying properties (P1) and (P2) must
be one of the following six forms of quadratic systems

ẋ = λx − y − bx2 − 2axy − a2y2/b,
ẏ = x + λy + ax2 + (a2 − b2)xy/b − ay2 (5)

(i.e. d = 0, c = (a2 − 3b2)/b and e = −a2/b in (2)), with b 6= 0;

ẋ = λx − y − cy2,
ẏ = x + λy + cxy

(6)

(i.e. a = b = d = 0 and e = c in (2)), with c 6= 0;

ẋ = λx − y + dxy + ey2,
ẏ = x + λy + cxy

(7)

(i.e. a = b = 0 in (2)), with c2 + d2 + e2 6= 0 and ∆i(λ, 0, 0, c, d, e) > 0 for i = 1, 2;

ẋ = λx − y + (2a + d)xy + ey2,
ẏ = x + λy + ax2 + cxy − ay2 (8)

(i.e. b = 0 in (2)), where ∆i(λ, a, 0, c, d, e) > 0 for i = 1, 2,
c = −a(2a + d − e)(2a + d + e)/((2a + d)e) and (2a + d)e 6= 0;

ẋ = λx − y − bx2 + (2a + d)xy + ey2,
ẏ = x + λy + ax2 + cxy − ay2 (9)

(i.e. 2b + c = c in (2)), where ∆i(λ, a, b, c, d, e) > 0 for i = 1, 2, and

c = −a
(

2ab + 2ae + bd + de + (b − e)
√

(2a + d)2 + 4be
)

/(2be) and be 6= 0;

ẋ = λx − y − bx2 + (2a + d)xy + ey2,
ẏ = x + λy + ax2 + cxy − ay2 (10)

(i.e. 2b + c = c in (2)), where ∆i(λ, a, b, c, d, e) > 0 for i = 1, 2, and

c = −a
(

2ab + 2ae + bd + de − (b − e)
√

(2a + d)2 + 4be
)

/(2be) and be 6= 0.

The functions ∆i for i = 1, 2 are defined in Section 2.
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Theorem 2. The six quadratic families of systems of Theorem 1 have only one equi-
librium point, the origin of coordinates. Moreover all these quadratic systems have
at most one limit cycle, and when it exists it surrounds the origen of coordinates.

Theorems 1 and 2 are proved in Section 2.

2 Proof of Theorems 1 and 2

Statement (a) of the next proposition is proved in statement (a) of Proposition
8 of Gasull and Llibre [7], and statement (b) of the next proposition is proved in
statement (b) of Theorem C also in [7].

Proposition 1. Let A(θ) = g(λg−f), where the functions f(θ) and g(θ) are defined
in (4). Then the following statements hold.

(a) If A(θ) 6= 0 and either A(θ) ≥ 0 or A(θ) ≤ 0, then system (2) has at
most one limit cycle surrounding the origin. Furthermore, it can exist only
if λsign(A(θ)) < 0.

(b) If A(θ) = 0, then system (2) has at most one limit cycle surrounding the
origin.

From Proposition 1 the next result follows immediately .

Corollary 1. If for all values of z ∈ R the polynomial G(z)(λG(z)−F (z)) is either
≥ 0, or = 0, or ≤ 0, then the differential system (2) has at most one limit cycle
surrounding the origin of coordinates.

If the polynomial G(z)(λG(z) −F (z)) is the zero polynomial, then by Corollary
1 there is at most one limit cycle of system (2) surrounding the origin. Later on
we will show that the six quadratic families of systems of Theorem 1 have only a
unique equilibrium point, the origin. So Theorems 1 and 2 will be proved when
the polynomial G(z)(λG(z) − F (z)) is the zero polynomial. So in what follows we
assume that this polynomial is distinct from zero.

By assumption (P1) the polynomial G(z)(λG(z)−F (z)) has degree six, therefore
both polynomials G(z) and λG(z) − F (z) are of degree three, so they have at least
one real root. Then such a real root must be common to the polynomials G(z) and
λG(z) − F (z), otherwise the assumption (P2) would not hold. Hence the resultant
of the polynomials G(z) and λG(z) − F (z) must be zero, i.e.

R(G,λG − F ) =
(

(4a + d)2 + (3b + c + e)2
)

(

ad(2b + c)(b + e) + be(2b + c)2+

4a4 + 4a3d + a2
(

3b2 + 2b(c + 3e) + 2ce + d2 − e2
)

)

.

Now we consider two cases.
Case 1: (4a + d)2 + (3b + c + e)2 = 0. Then d = −4a, e = −3b − c. Therefore the
roots of the polynomial G(z) are ±i and −a/(3b + c), note that 3b + c 6= 0 because
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the polynomial G(z) has degree 3 and consequently it must have three roots. The
roots of the polynomial λG(z) − F (z) are ±i and −(b + λa)/(a + λ(3b + c)), and
a + λ(3b + c) 6= 0 because the polynomial λG(z) − F (z) has degree 3.

In order that the polynomial G(z)(λG(z) − F (z)) verify that g ≥ 0 or g ≤ 0 for
all z ∈ R, we need that the real root of the polynomials G(z) and λG(z) − F (z)
coincide, i.e.

−a/(3b + c) = −(b + λa)/(a + λ(3b + c)). (11)

Then if b 6= 0 we have that c = (a2 − 3b2)/b and

G(z)(λG(z) − F (z)) =
a(λa + b)(z2 + 1)2(az + b)2

b2
.

Since the function G(z)(λG(z) − F (z)) satisfies the assumptions of Corollary 1, so
system (2) satisfying c = (a2 − 3b2)/b reduces to system (5) and has at most one
limit cycle, this limic cycle surrounds the origin. Furthermore also this system has
a unique equilibrium point, the origin, as it is easy to check.

If b = 0 then from (11) we get that a = 0, and consequently

G(z)(λG(z) − F (z)) = λc2z2(1 + z2)2.

Again the function G(z)(λG(z) − F (z)) satisfies the assumptions of Corollary 1, so
system (2) satisfying b = a = 0 reduces to system (6) and has at most one limit
cycle, and this limic cycle surrounds the origin. Furthermore also this system has a
unique equilibrium point, the origin, as it is easy to verify.

We remark that if we impose that the polynomials G(z) and λG(z) − F (z) be
one a multiple of the other, or equivalently that they have exactly the same three
roots, then we get exactly the previous two quadratic systems (5) and (6). Hence
in what follows we can assume that the polynomials G(z) and λG(z) − F (z) have
different roots. Then in order that the polynomial G(z)(λG(z) − F (z)) can satisfy
the assumption (P2) and since the polynomials G(z) and λG(z) − F (z) are cubic
polynomials by the assumption (P1), they must have in common a real root, and
the other roots cannot be the same for both polynomials, otherwise we will obtain
the quadratic systems (5) and (6).

In summary, we can restrict our attention to the polynomials G(z) and
λG(z) − F (z) having a common real root and the other two roots non-real be-
cause if one of these two polynomials has the three real roots, then it is not possible
that the polynomial G(z)(λG(z)−F (z)) satisfies the assumption (P2), i.e. the poly-
nomial G(z)(λG(z) − F (z)) would change the sign because not all the real roots of
the polynomials G(z) and (λG(z) − F (z)) would coincide. This implies that the
discriminats of the polynomials G(z) and λG(z) − F (z) must be positive, see an
easy proof of this fact in the cubic equation of Wikipedia.

The discriminants ∆i = ∆i(λ, a, b, c, d, e) for i = 1, 2 of the polynomials G(z)
and λG(z) − F (z) are respectively
∆1 = 108a4 +81a2b2 +54a2bc+9a2c2 +108a3d+54ab2d+36abcd+6ac2d+36a2d2 +
9b2d2 + 6bcd2 + c2d2 + 4ad3 + 162a2be + 108b3e + 54a2ce + 108b2ce + 36bc2e + 4c3e +
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54abde + 18acde − 27a2e2,
and
∆2 = 108a4 + 117a2b2 + 32b4 + 90a2bc + 48b3c + 9a2c2 + 24b2c2 + 4bc3 + 108a3d +
60ab2d + 42abcd + 6ac2d + 36a2d2 + 4b2d2 + 4bcd2 + c2d2 + 4ad3 + 90a2be + 48b3e +
18a2ce+48b2ce+12bc2e+42abde+12acde+4bd2e+2cd2e+9a2e2+24b2e2+12bce2 +
6ade2 +d2e2 +4be3−4ab3λ+6ab2cλ−2ac3λ+36a2bdλ+24b3dλ+16b2cdλ−2bc2dλ−
2c3dλ+18abd2λ+6acd2λ+4bd3λ+2cd3λ+12ab2eλ−12abceλ−36a2deλ−12b2deλ−
14bcdeλ−4c2deλ−18ad2eλ−2d3eλ−12abe2λ+6ace2λ−12bde2λ−2cde2λ+4ae3λ+
216a4λ2+198a2b2λ2+36b4λ2+144a2bcλ2+60b3cλ2+18a2c2λ2+37b2c2λ2+10bc3λ2+
c4λ2 +216a3dλ2 +102ab2dλ2 +54abcdλ2 +72a2d2λ2−8bcd2λ2−4c2d2λ2 +12ad3λ2 +
d4λ2+252a2beλ2+144b3eλ2+72a2ceλ2+132b2ceλ2+34bc2eλ2+2c3eλ2+120abdeλ2+
54acdeλ2 +18bd2eλ2+8cd2eλ2−18a2e2λ2+36b2e2λ2+24bce2λ2+c2e2λ2−6ade2λ2+
18ab2cλ3 +12abc2λ3 +2ac3λ3 +36a2bdλ3 +36b3dλ3 +42b2cdλ3 +16bc2dλ3 +2c3dλ3 +
6abd2λ3−6acd2λ3−2bd3λ3−2cd3λ3−36abceλ3−12ac2eλ3−36a2deλ3−36b2deλ3−
42bcdeλ3−10c2deλ3−6ad2eλ3+18ace2λ3+108a4λ4+81a2b2λ4+54a2bcλ4+9a2c2λ4+
108a3dλ4+54ab2dλ4+36abcdλ4 +6ac2dλ4+36a2d2λ4+9b2d2λ4+6bcd2λ4+c2d2λ4+
4ad3λ4+162a2beλ4+108b3eλ4+54a2ceλ4+108b2ceλ4+36bc2eλ4+4c3eλ4+54abdeλ4+
18acdeλ4 − 27a2e2λ4.
We recall that when the discriminant of a cubic polynomial is positive, then such a
polynomial has a unique real root.
Case 2:
ad(2b+c)(b+e)+be(2b+c)2+4a3(a+d)+a2

(

3b2 + 2b(c + 3e) + 2ce + d2 − e2
)

= 0.
This equation has the following seven sets of solutions

(s1) a = e = 0;

(s2) b = e = 0 and d = −2a;

(s3) c = −((2b2d + 4a2(a + d) + a(3b2 + d2))/(b(2a + d))) and e = 0;

(s4) a = b = 0;

(s5) c = −((a(2a + d − e)(2a + d + e))/((2a + d)e)) and b = 0;

(s6) c = −((2(a2 +2b2)e+2a2(b+e)+ad(b+e)+a(b−e)
√

(2a + d)2 + 4be)/(2be));

(s7) c = −((2(a2 +2b2)e+2a2(b+e)+ad(b+e)−a(b−e)
√

(2a + d)2 + 4be)/(2be)).

The polynomial G(z)(λG(z)−F (z)) has degree less than 6 for the solutions (s1),
(s2) and (s3), so we do not consider these three solutions. While for the solutions
from (s4) to (s7) this polynomial has degree 6.

Every one of the solutions from (s4) to (s7) implies that the polynomials G(z)
and λG(z)−F (z) have at least one root in common, if additionally we impose that
the discriminants of these two polynomials are positive, then these polynomials have
one real root in common and two distinct conjugate complex roots. Additionally we
shall prove that the quadratic systems satisfying some solution (sk) for k = 4, . . . , 7
have a unique equilibrium, the focus localized at the origin of coordinates, therefore
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by Corollary 1 we obtain that these four families of quadratic systems satisfying
some solution (sk) for k = 4, . . . , 7 with ∆1 > 0, ∆2 > 0, cannot have more than
one limit cycle surrounding the origin. Hence Theorems 1 and 2 will be proved.

Now we prove that the quadratic systems satisfying (sk) for k = 4, . . . , 7 have a
unique equilibrium. Indeed, since the polynomial λG(z) − F (z) has a unique real
root and two complex ones, and this real root also is the unique real root of the
polynomial G(z), it follows from systems (3) that systems (2) has only one finite
equilibrium point, the origin of coordinates. Indeed, the equilibrium points (r∗, θ∗)
of system (3) with r∗ 6= 0 must satisfy that λg(θ∗) − f(θ∗) = 0 and r∗ = −1/g(θ∗),
but if λg(θ∗)− f(θ∗) = 0 then 1/g(θ∗) = ∞. Hence the unique equilibrium point of
system (3) is the one with r = 0, i.e. the origin of coordinates.

We note that the solutions (s4), (s5), (s6) and (s7) provide the quadratic systems
(7), (8), (9) and (10), respectively.

Acknowledgements

This work is partially supported by the Agencia Estatal de Investigación grant
PID2019-104658GB-I00, the H2020 European Research Council grant MSCA-RISE-
2017-777911, the Generalitat de Catalunya grant 2021 SGR 00113, and by the
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1 Introduction

Let k be a field, let G be a multiplicative group of invertible n×n matrices with
elements in k and, for A ∈ G and x = (x1, x2, . . . , xn) ∈ kn, let A · x denote the
usual action of G on kn. A polynomial f ∈ k[x1, . . . , xn] is invariant under G if
f(x) = f(A · x) for every x ∈ kn and every A ∈ G. The polynomial f is also called
an invariant of G.

Consider two-dimensional systems of the form

ẋ = x−
∑

(p,q)∈S

apqx
p+1yq,

ẏ = −y +
∑

(p,q)∈S

bqpx
qyp+1 ,

(1)

where the variables x and y and the coefficients of (1) are complex, and
S ⊂ ({−1} ∪ N0) × N0 is a finite set, of which every element (p, q) satisfies
p + q ≥ 1. Let ℓ be the cardinality of the set S. Then, C

2ℓ is the parameter
space of (1), which we denote by E(a, b). The set of polynomials in ordered vari-
ables ap1,q1, . . . , apℓ,qℓ , bqℓ,pℓ

, . . . , bq1,p1 with coefficients in the field k will be denoted
by k[a, b].

c© Tatjana Petek and Valery G. Romanovski, 2023
DOI: https://doi.org/10.56415/basm.y2023.i1.p16
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After the transformation

x′ = e−iϕx, y′ = eiϕy (2)

(such transformations form a one-parametric group of the parameter ϕ), we obtain
the system

ẋ′ = x′ −
∑

(p,q)∈S

a(ϕ)pqx
′p+1y′

q
, ẏ′ = −y′ +

∑

(p,q)∈S

b(ϕ)qpx
′qy′

p+1
,

where the coefficients of the transformed system are

a(ϕ)pq = apqe
i(pj−qj)ϕ, b(ϕ)qp = bqpe

−i(pj−qj)ϕ, (3)

for (p, q) ∈ S. For any fixed ϕ the equations in (3) determine an invertible linear
mapping Uϕ of the space E(a, b) of parameters of (1) onto itself.

The group Uϕ of family (1) acts on E(a, b) = C
2ℓ. The set of polynomial in-

variants of this group action has been for the first time studied by Sibirsky [12,13].
Actually, Sibirsky considered the case of the ”real” system (1), that is, the case
where both equations on the right-hand side of (1) are multiplied by i and the
first equation of (1) is the complex conjugate of the second one (such systems are
complexifications of real systems, see e.g. [9, Chapter 3]). However, as it is shown
in [8] and [9, Chapter 5], the theory for general systems (1) is similar to the theory
developed by Sibirsky.

Before we proceed, we fix some notations. For any n-tuple s = (s1, s2, . . . , sn),
n ≥ 1, let ŝ be the permutation ŝ = (sn, sn−1, . . . , s1). For two n-tuples
r = (r1, r2, . . . , rn), s = (s1, s2, . . . , sn) we define the ”dot”-product as
r · s = r1s1 + r2s2 + · · · + rnsn. Given n-tuples r, s, let the ordered pair (r, s)
denote the 2n-tuple generated in the obvious way. Furthermore, we will use a short
form of monomial writing as (a1, a2, . . . , an)

(ν1,ν2,...,νn) := aν11 a
ν2
2 . . . aνn

n = aν , where
a = (a1, . . . , an) and ν = (ν1, . . . , νn).

Let L1, L2 : N
2ℓ
0 → Z be homomorphisms of the additive monoid N

2ℓ
0 defined

with respect to the ordered set S by

L1(ν) = p1ν1 + · · · + pℓνℓ + qℓνℓ+1 + · · · + q1ν2ℓ

= (p, q̂) · ν,

L2(ν) = q1ν1 + · · · + qℓνℓ + pℓνℓ+1 + · · · + p1ν2ℓ)

= (q, p̂) · ν,

(4)

where p := (p1, . . . , pℓ), q := (q1, . . . , qℓ) and ν := (ν1, . . . , ν2ℓ). Furthermore, the
map

L := L1 − L2 : N
2ℓ
0 → Z (5)

is a monoid-homomorphism as well, hence the kernel,

˜M := kerL = {ν : L(ν) = 0} (6)
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is also a monoid. Since Uϕ changes only the coefficients of polynomials, a polynomial
f ∈ C[a, b] is an invariant of the group Uϕ if and only if each of its terms is an
invariant (see Lemma 3.4 of [12]). Therefore, for the description of polynomial
invariants of Uϕ, it suffices to find the invariant monomials. By (3), for ν ∈ N

2ℓ
0 ,

a = (ap1,q1 . . . apℓ,qℓ), b = (bq1,p1 . . . aqℓ,pℓ
), we denote by [ν] ∈ C[a, b] the monomial

[ν] := aν1p1q1 · · · a
νℓ
pℓqℓ

b
νℓ+1
qℓpℓ

· · · bν2ℓ
q1p1

= (a, b̂)ν . (7)

The image of ν under the group action Uϕ is the monomial

Uϕ([ν]) = (a(ϕ), ̂b(ϕ))ν

= a(ϕ)ν1p1q1 · · · a(ϕ)νℓ
pℓqℓ

b(ϕ)
νℓ+1
qℓpℓ

· · · b(ϕ)ν2ℓ
q1p1

= aν1p1q1e
iϕν1(p1−q1) · · · aνℓ

pℓqℓ
eiϕνℓ(pℓ−qℓ)b

νℓ+1
qℓpℓ

eiϕνℓ+1(qℓ−pℓ) · · · bν2ℓ
q1p1

eiϕν2ℓ(q1−p1)

= eiϕ[ν1(p1−q1)+···+νℓ(pℓ−qℓ)+νℓ+1(qℓ−pℓ)+···+ν2ℓ(q1−p1)]aν1p1q1 · · · a
νℓ
pℓqℓ

b
νℓ+1
qℓpℓ

· · · bν2ℓ
q1p1

= eiϕ(L1−L2)(ν) [ν]

= eiϕL(ν) [ν] .
(8)

From (8) we see that the monomial [ν] defined by (7) is invariant under the

group action Uϕ, for system (1) if and only if L(ν) = 0, that is, if and only if ν ∈ ˜M.
Since, for any ν ∈ N

2ℓ
0 ,

L(ν) = (p− q, q̂ − p̂) · ν

= (q − p, p̂− q̂) · ν̂

= −L(ν̂),

(9)

we have ν ∈ ˜M if and only if ν̂ ∈ ˜M, hence the monomial [ν] is invariant under the
group action Uϕ if and only if its so-called conjugate

[ν̂] = aν2ℓ
p1q1

· · · aνℓ+1
pℓqℓ

bνℓ
qℓpℓ

· · · bν1q1p1

= (a, b)ν̂
(10)

is also invariant.
Sibirsky found some important properties of the monoid ˜M. One of them is the

fact that the set {[ν] : ν ∈ ˜M} is closed under multiplication. From his results one

can see that a basis of the monoid ˜M (a basis of the invariants of the group Uϕ) can
be found by sorting, since Sibirsky got a bound for the degree of basis invariants. A
simple algorithm to compute generators of ˜M based on the Gröbner bases theory
was proposed in [4].

With system (1) and the monoind ˜M we associate the ideal

˜IS = 〈[ν] − [ν̂] : ν ∈ ˜M〉.

This ideal was called in [4] the Sibirsky ideal of system (1). It was shown by Sibirsky
[12, Chapter 3] that in the ”real” case if the parameters of the system belong to the
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variety V(IS), then the vector field of the system is symmetric with respect to a
line passing through the origin (after reversion of time), that is, it is time-reversible,
and, therefore, admits an analytic local first integral in a neighborhood of the origin.
Later on the result was generalized to general systems (1) in [7,8], where it was shown
that for family (1) not all systems from V(IS) are time-reversible, but V(IS) is the
Zariski closure of the set of time-reversible systems and, therefore, all systems from
V(IS) admit an analytic first integral in a neighborhood of the origin.

We recall (see e.g. [5]) that in the higher-dimensional case a system of ordinary
differential equations

ẋ = X (x), (11)

where X (x) is a vector function defined on some domain D of R
n or C

n, is time-
reversible on D if there exists an involution ψ : D → D (the involution means that
ψ is smooth and ψ ◦ ψ = idD) such that

D−1
ψ X ◦ ψ = −X .

It is said that a system (11) is completely integrable on D if it admits n − 1
functionally independent analytic first integrals on D. The problem of complete
integrability can be also considered as a natural generalization of the center problem
for two-dimensional systems to higher dimensions, see e.g. [6, 11,14].

In this paper we study three-dimensional systems of the form

ẋ = P1(x, y, z),

ẏ = y + P2(x, y, z),

ż = −z + P3(x, y, z),

(12)

where Pj , j ∈ {1, 2, 3}, are polynomial functions on C
3 which vanish together with

its first partial derivatives at the origin and present some generalizations of the above
mentioned results of Sibirsky and those of [7, 8] to the case of system (12).

2 Time-reversibility

The following statement is easily derived from a general result of [6] (see also [10]).

Theorem 1. If under the interchange of the last two variables a system (12) is
transformed to a system of the same form but with the right-hand side multiplied by
−1, then it admits two analytic local first integrals of the form

Ψ1(x, y, z) = x+ · · ·

and

Ψ2(x, y, z) = yz + · · · .
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In the other words, the statement means that if a system (12) is time-reversible
with respect to the linear involution defined on C

3

x 7→ x, y 7→ z, z 7→ y, (13)

then it is completely integrable in a neighborhood of the origin.
Without loss of generality we can write a polynomial system (12) in the form

ẋ =
∑

(P,Q,R)∈T

aPQRx
P yQzR,

ẏ = y −
∑

(p,q,r)∈S

bpqrx
pyq+1zr,

ż = −z +
∑

(p,q,r)∈S

cprqx
pyrzq+1,

(14)

where S ⊂ N0×(N0∪{−1})×N0 is a set of ℓ triplets, all satisfying 1 ≤ p+q+r ≤ N ,
and T ⊂ N0 × N0 × N0 is a set of triplets, all satisfying 2 ≤ P +Q+R ≤ N , where
N is the degree of (14). Note that the indexing set T is symmetric with respect to
the second and third coordinates, i.e. (P,Q,R) ∈ T if and only if (P,R,Q) ∈ T .

The correctness of the following statement can be verified by straightforward
computations, see also (20).

Lemma 2. Let α 6= 0. If a system (14) is time-reversible with respect to the invo-
lution

ψ(x, y, z) = (x, αz, α−1y), (15)

then aPQQ = 0 for every (P,Q,Q) ∈ T .

Due to the above lemma, we a priori assume that in (14)

aPQQ = 0 for all (P,Q,Q) ∈ T

or, equivalently, we exclude these parameters from the parameter space. By enu-
meration we fix an arbitrary order in the indexing set S

S = {(p1, q1, r1), . . . , (pℓ, qℓ, rℓ)}. (16)

Further we split the indexing set T in a disjoint union T = T1 ∪ T2 with
T1 = {(P,Q,R) : Q > R} and T2 = {(P,Q,R) : Q < R}. Note that T1 and T2

have the property that for every (P,Q,R) ∈ T1 we have (P,R,Q) ∈ T2, thus both T1

and T2 have the same number of elements, say m elements. Then we fix an arbitrary
order in T1:

T1 = {(P1, Q1, R1), . . . , (Pm, Qm, Rm)}. (17)

In a natural way, this order induces the order in the set T2

T2 = {(P1, R1, Q1), . . . , (Pm, Rm, Qm)}.
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The ring of polynomials with ordered coefficients

aP1Q1R1 , · · · aPmQmRm , aPmRmQm, · · · aP1R1Q1, bp1q1r1 , · · · bpℓqℓrℓ , cpℓrℓqℓ, · · · cp1r1q1
(18)

as indeterminates and coefficients in a field k (typically C or Q) will be denoted by
k[a, b, c]. Along with the latter ring we will work also with its extension k[a, b, c, α,w]
where α and w are variables.

Proposition 3. 1) The Zariski closure of the set of systems in family (14) which
are time-reversible with respect to involution (15) is the variety V(IR) of the ideal

IR = H ∩ C[a, b, c],

where H is the following ideal in C[a, b, c, α,w]

H = 〈aPQRα
Q+aPRQα

R, bpqrα
q+1 − cprqα

r+1, αw− 1 : (P,Q,R) ∈ T, (p, q, r) ∈ S〉.
(19)

2) If the parameters of a system (14) belong to the variety V(IR), then the system
is completely integrable.

Remark 4. Notice that the above ideal H remains the same if we replace the in-
dexing set T by only T1 or by T2.

Proof of Prop. 3. Let X be the vector field (14). Equating to zero the coefficients
of the monomials of the polynomial Dψ · X + X ◦ ψ we obtain the system

aPQR = −αR−QaPRQ, bpqr = αr−qcprq, (P,Q,R) ∈ T, (p, q, r) ∈ S.

That means, system (14) is time-reversible with respect to involution (15) if and
only if there is a nonzero α such that

aPQRα
Q + αRaPRQ = 0, bpqrα

q − αrcprq = 0, (P,Q,R) ∈ T, (p, q, r) ∈ S (20)

or, equivalently, avoiding the possibly negative exponent q ≥ −1

aPQRα
Q + αRaPRQ = 0, bpqrα

q+1 − αr+1cprq = 0, (P,Q,R) ∈ T, (p, q, r) ∈ S.

By the Elimination theorem (see e.g. [2, 9]) this is the case when the coefficients of
(14) belong to the variety of the ideal IR defined by (3).

2) By the construction V(IR) is the Zariski closure of systems which are time-
reversible with respect to (15). We observe that if a system (14) is time-reversible
with respect to (15) then, after the change of coordinates x1 = x, x2 = α−1y,
x3 = αz, we obtain the system which is time-reversible with respect to involution
(13). By Theorem 1 the obtained system is completely integrable. Thus, V(IR) is
the Zariski closure of a set of completely integrable systems. By the results of [11]
the set of completely integrable systems is an algebraic set. Therefore systems from
V(IR) are completely integrable. �
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3 Invariants

Recalling the fixed order (18) in our polynomial indeterminates, we write each
monomial in the polynomial ring with these coefficients as indeterminates in the
form

aµ1

P1Q1R1
· · · aµn

PmQmRm
aPmRmQm

µn+1 · · · aµ2m

P1R1Q1
bν1p1q1r1 · · · b

νℓ
pℓqℓrℓ

c
νℓ+1
pℓrℓqℓ · · · c

ν2ℓ
p1r1q1

.
(21)

Introducing the notations

a =(aP1Q1R1 , . . . , aPmQmRm),

a′ =(aP1R1Q1, . . . , aPmRmQm),

b =(bp1q1r1 , . . . , bpℓqℓrℓ),

c =(cp1r1q1, . . . , cpℓrℓqℓ),

we set up the monomial (21)

[µ; ν] =[µ1, . . . , µ2m; ν1, . . . , ν2ℓ]

=(a, ̂a′)µ(b, ĉ)ν .
(22)

In particular,
[µ; 0] = (a, ̂a′)µ (23)

and
[0; ν] = (b, ĉ)ν . (24)

With systems (14) and the fixed enumeration (17), (16) of indices (P,Q,R) ∈ T1

and (p, q, r) ∈ S we associate vectors

K =(Q1 −R1, . . . , Qm −Rm) = (K1, . . . ,Km),

κ =(q1 − r1, . . . , qℓ − rℓ) = (κ1, . . . , κℓ)

and the map L : N
2m
0 × N

2ℓ
0 → Z, defined by

L(µ, ν) = (K,− ̂K) · µ+ (κ,−κ̂) · ν, µ ∈ N
2m
0 , ν ∈ N

2ℓ
0 .

It is easy to see that L is a homomorphism of the Abelian monoid
N

2m
0 ×N

2ℓ
0 into the Abelian monoid Z and consequently, the kernel of L, denoted by

M := {(µ, ν) : L(µ, ν) = 0} is a submonoid in N
2m
0 × N

2ℓ
0 .

A simple computation gives that for every µ ∈ N
2m
0 , ν ∈ N

2ℓ
0

L(µ, ν) = −L(µ̂, ν̂),

easily providing the following statement.

Lemma 5. (µ, ν) ∈ M if and only if (µ̂, ν̂) ∈ M.

Let
x→ x, y → αy, z → α−1z (25)

be the one-parametric group Uα of invertible linear transformations of the phase
space of systems (14). Similarly to the two-dimensional case in Section 1, we denote
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the coefficients of the new systems as aPQR(α), bpqr(α), cprq(α). The straightforward
computation gives

aPQR(α) = αR−QaPQR,

bpqr(α) = αr−qbpqr,

cprq(α) = αq−rcprq,

(26)

for all (P,Q,R) ∈ T , (p, q, r) ∈ S.

Proposition 6. The monomial [µ; ν] is invariant under the action of group (25) if
and only if (µ, ν) ∈ M.

Proof. The action of the group (25) induces the change of coefficients of (14) ac-
cording to (26). Recalling (23) and (24) and performing this substitution in [µ, ν]
we obtain

Uα([µ; ν]) =[µ; ν]α(Q−R,R̂−Q̂)·µ+(q−r,r̂−q̂)·ν

=[µ, ν]α(K,−K̂)·µ+(κ,−κ̂)·ν

=[µ, ν]αL(µ,ν)

wherefrom the claim easily follows. �

We now define a generalized version of the Sibirsky ideal. For any µ ∈ N
2m
0

denote |µ| =
∑2m

j=1 µj.

Definition 7. The ideal

IS = 〈(−1)|µ|[µ; ν] − [µ̂; ν̂] : (µ, ν) ∈ ˜M〉

is called the Sibirsky ideal of systems (14).

For the proof of our main theorem, we will apply the following theorem ([1],
Theorem 2.4.10).

Theorem 8. Let J be an ideal of k[y1, . . . , ym], I be an ideal of k[x1, . . . xn] and let
K = 〈I, y1 − f1, . . . , ym − fm〉 ⊆ k[y1, . . . , ym, x1, . . . xn].
Let φ : k[y1, . . . , ym]/J → k[x1, . . . xn]/I be the homomorphism defined by

yi + J 7→ fi + I.

Then ker φ = K ∩ k[y1, . . . , ym](modJ). That is, if ker φ = 〈g1 + J, . . . , gp + J〉, then
K ∩ k[y1, . . . , ym] = 〈g1, . . . , gp〉.

The statement below is our main result and it generalizes a result obtained in [7]
for the case of systems (1) to the case of systems (14).

Theorem 9. IR = IS.
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Proof. Recall that the ideal H is defined by (19) and the ideal, which we are inter-
ested in, is IR = H ∩ C(a, b, c). Let I = 〈αw − 1〉, s = (s1, . . . , sm), t = (t1, . . . , tℓ).
We define a homomorphism φ : C[a, b, c] → C[s, t, α,w]/I by

aPnQnRn 7→ sn + I,

aPnRnQn 7→ −αQn−Rnsn + I,

bpjqjrj 7→ tj + I,

cpjrjqj 7→ αqj−rj tj + I, if qj ≥ rj ,

cpjrjqj 7→ wrj−qj tj + I, if rj > qj,

n = 1, 2, . . . ,m, j = 1, 2, . . . , ℓ.

Recalling the shorthand notation Kn = Qn − Rn > 0, n = 1, 2, . . . ,m, and
κj = qj − rj , j = 1, 2, . . . , ℓ, let

˜H = 〈I, aPnQnRn − sn, aPnRnQn − (−αKnsn), bpjqjrj − tj, cpkj
rkj

qkj
− tkj

α
κkj ,

cpki
rki

qki
− w−κki tki

: 1 ≤ n ≤ m, 1 ≤ j ≤ ℓ, κkj
≥ 0, κki

< 0〉.

By Theorem 8 (J is taken to be trivial), we have

kerφ = ˜H ∩ C[a, b, c]

and by Proposition 3, IR = H ∩ C[a, b, c].

We next show that ˜H ∩ C[a, b, c] = H ∩ C[a, b, c]. By elimination of
s1, . . . , sm, t1, . . . , tℓ from ˜H we get exactly H. Hence H = ˜H ∩ C[a, b, c, α,w] and

IR = H ∩ C[a, b, c]

= ˜H ∩ C[a, b, c, α,w] ∩ C[a, b, c]

= ˜H ∩ C[a, b, c]

= kerφ.

Next we check that IS ⊂ ker φ, i.e. that

φ([µ̂; ν̂]) = (−1)|µ|φ([µ; ν]), (µ; ν) ∈ M.

Writing in a short way, with µ = (ξ, η) ∈ N
m
0 × N

m
0 , ν = (ζ, θ) ∈ N

ℓ
0 × N

ℓ
0, we have

[µ; 0] = [ξ, η; 0] = aξ(â′)η =

m
∏

j=1

aPjQjRj

ξj

m
∏

n=1

aPnRnQn

η̂n

and

[0; ν] = [0; ζ, θ] = bζ ĉθ =

ℓ
∏

j=1

bpjqjrj
ζjΠℓ

n=1cpnrnqn
θ̂n .
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Now, acting by φ on [µ; 0], noting that ŝη = sη̂ gives us

φ([µ; 0]) = φ([ξ, η; 0]) = (−1)|η|α( ̂Q− ̂R)·ηsξ ŝη + I

= (−1)|η|α
̂K·ηsξ+η̂ + I

(27)

and
φ([µ̂; 0]) = φ([η̂, ξ̂; 0]) = (−1)|ξ|α( ̂Q− ̂R)·ξ̂sη̂ ŝξ̂ + I

= (−1)|ξ|α(Q−R)·ξsξ+η̂ + I

= (−1)|ξ|αK·ξsξ+η̂ + I.

By choosing [µ; 0] = [ξ, η; 0] ∈ M we know that K · ξ = ̂K · η. Moreover, it is easy
to check that

φ((−1)|µ| [µ; 0]) = φ([µ̂; 0]))

since (−1)|ξ|+2|η| = (−1)|ξ|. We have to be a bit careful when computing φ(cθ).

Namely, φ(cθn
n ) = tθn

n α
κnθn if κn = qn − rn ≥ 0 and φ(c

θj

j ) = tjw−κjθj if κj < 0.
Denote by κ+ the non-negative part of κ, and by κ− the negative part such that
κ = κ+ + κ− and supp κ+ ∩ supp κ− = {}. Now,

φ([0; ν]) = φ([0; ζ, θ]) = tζ t̂θα(κ+)·θ̂w−(κ
−

)·θ̂ + I = tζ+θ̂α(κ+)·θ̂w−(κ
−

)·θ̂ + I (28)

and
φ([0; ν̂ ]) = φ([0; θ̂, ζ̂]) = tθ̂+ζα(κ+)·ζw−(κ

−
)·ζ + I.

We next show that α(κ+)·θ̂w−(κ
−

)·θ̂ − α(κ+)·ζw−(κ
−

)·ζ ∈ I as soon as (0; ζ, θ) ∈ M.
Denote u1 = κ+ · θ̂, u2 = −κ− · θ̂, v1 = κ+ · ζ, v2 = −κ− · ζ. The requirement
(0; ζ, θ) ∈ M tells us that v1 − u1 = v2 − u2 =: d. Assuming that d ≥ 0 we obtain

α(κ+)·θ̂w−(κ
−

)·θ̂ − α(κ+)·ζw−(κ
−

)·ζ =αu1wu2 − αv1wv2

=αu1wu2(1 − αdwd)

=αu1wu2f(α,w)(1 − αw)

where f(α,w) is a polynomial. We proceed very similarly when d < 0. Therefore,
φ([0; ν]) = φ([0; ν̂]).

To complete this step of the proof, i.e. to show that all generating binomials of
IS are in the kernel of φ, let (µ, ν) ∈ M. Then, as φ is a ring homomorphism,

φ((−1)|µ|[µ; ν]) =φ((−1)|µ|[µ; 0])φ([0; ν])

=φ([µ̂; 0])φ([0; ν̂ ])

=φ([µ̂; ν̂]).

It remains to check that ker φ ⊂ IS . A reduced Gröbner basis G of C[a, b, c]∩ ˜H
can be found by computing a reduced Gröbner basis of ˜H using an elimination
ordering with {a, b, c} < {w,α, s, t}, and then intersecting it with C[a, b, c]. Since ˜H
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is binomial, any reduced Gröbner basisG of ˜H also consists of binomials. This means
that IR = ˜H∩Q[a, b, c] = ker φ is a binomial ideal. Assume that for some (ξ, η; ζ, θ),
(γ, δ; ε, ϕ) ∈ N

2m × N
2ℓ, u ∈ C, the equality φ(u[ξ, η; ζ, θ] − [γ, δ; ε, ϕ]) = 0 holds.

Without loosing any generality, we assume that [ξ, η; ζ, θ] and [γ, δ; ε, ϕ] do not have
nontrivial common factors. This implies that ξjγj = ηjδj = 0, j = 1, 2, . . . ,m, and
ζiεi = θiδi = 0, i = 1, 2, . . . , ℓ. Suppose

φ(u[ξ, η; ζ, θ]) = φ([γ, δ; ε, ϕ]).

We will show that [γ, δ; ε, ϕ] = [η̂, ξ̂; θ̂, ζ̂] and u = (−1)|ξ|+|η|. From (27) and (28)
one derives that

f := u(−1)|η|+|δ|sξ+η̂tζ+θ̂αK̂·η+(κ+)·θ̂w−(κ
−

)·θ̂−sγ+δ̂tε+ϕ̂α
̂K·δ+(κ+)·ϕ̂w−(κ

−
)·ϕ̂ ∈ 〈αw−1〉.

Computing the value of f at w = α−1 we must have 0. But this implies the equality
of (possibly rational) monomials

sξ+η̂tζ+θ̂α
̂K·η+(κ++κ

−
)·θ̂ = sγ+δ̂tε+ϕ̂α

̂K·δ+(κ++κ
−

)·ϕ̂ (29)

and additionally,

u(−1)|η|+|δ| = 1. (30)

Comparing the powers at s, t, α in (29) gives

ξ + η̂ = γ + δ̂ (31)

ζ + θ̂ = ε+ ϕ̂ (32)

̂K · η + κ · θ̂ = ̂K · δ + κ · ϕ̂. (33)

We will firstly prove and then immediately apply the following technical lemma.

Lemma 10. Let ξ, η, γ, δ ∈ N0 be non-negative integers. Assume that

ξ + η = γ + δ (34)

ξγ = 0 (35)

ηδ = 0. (36)

Then (γ, δ) = (η, ξ).

Proof. Let us firstly assume that γ > η. Then γ 6= 0 and by (35), ξ = 0. Apply (34)
to get a contradiction, since δ is not negative. Similarly, if η > γ we have η 6= 0 and
thus by (36) one obtains δ = 0. This contradicts the non-negativity of ξ. It follows
that γ = η and consequently from (34), δ = ξ as claimed. �

Let us continue with the proof of Theorem 9. From (31) we observe that
ξj + η̂j = γj + δ̂j and by our assumption on coprimeness, ξjγj = η̂j δ̂j = 0 for

all j = 1, 2, . . . ,m. Applying Lemma 10 we obtain γj = η̂j and δ̂j = ξj, j = 1, . . . ,m
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and in turn, γ = η̂ and δ = ξ̂, i.e. (γ, δ) = (η̂, ξ̂). In a very similar manner we get
(ε, ϕ) = (θ̂, ζ̂) from (32).

It remains to see that both [ξ, η; ζ, θ] and [γ, δ; ε, ϕ] must be in M. By Lemma
5 and inserting (γ, δ, ε, ϕ) = (η̂, ξ̂, θ̂, ζ̂) into (33) we confirm the claim.

Finally we easily get u = (−1)|ξ|+|η| from (30) since |δ| = |ξ̂| = |ξ|. �

A generating set or basis N of M is minimal if, for each ν ∈ N , N \ {ν} is not
a generating set. A minimal generating set is called a Hilbert basis of M.

Theorem 11. Let G be the reduced Gröbner basis of IS with respect to a chosen
term order. Then the following holds.

1. Every element of G has the form (−1)|µ|[µ; ν] − [µ̂; ν̂], where (µ, ν) ∈ M and
[µ; ν] and [µ̂; ν̂] have no common factors.

2. The set

N = {(µ, ν), (µ̂, ν̂) : (−1)|µ|[µ; ν] − [µ̂; ν̂] ∈ G}

∪ {(0, ej) + (0, e2ℓ−j+1) : j = 1, . . . , ℓ and ± ([0; ej ] − [0; e2ℓ−j+1]) 6∈ G},

where ej = (0, . . . , 0,
j

1, 0, . . . , 0) ∈ Q
2ℓ, is a Hilbert basis of M.

The proof of the theorem is similar to the proof of Theorem 5.2.5 in [9].
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A survey on local integrability and its regularity

Yantao Yang and Xiang Zhang

Abstract. In this survey paper, we summarize our results and also some related
ones on local integrability of analytic autonomous differential systems near an equi-
librium. The results are on necessary conditions related to existence of local analytic
or meromorphic first integrals, on existence of analytic normalization of local analyt-
ically integrable system, and also on some sufficient conditions for existence of local
analytic first integrals. Among which the results are also on regularity of the local
first integrals, including analytic and Gevrey smoothness. We also present some open
questions for further investigation.
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1. Introduction

For analytic autonomous differential system

ẏ =
dy

dx
= F (y), y ∈ Ω ⊂ R

n, (1)

where Ω is an open domain, the problem on existence of local or global first integrals
is classical. This problem can be traced back to Poincaré [17] and Darboux [3, 4].
A smooth function H(y) is a first integral of system (1) on Ω if 〈∇H,F (y)〉 ≡ 0
except perhaps a zero Lebesgue measure subset. Hereafter 〈·, ·〉 represents the inner
product of two vectors in R

n. System (1) is analytic (smooth) integrable if it has
n − 1 functionally independent analytic (smooth) first integrals. Here our system
is autonomous, we consider the first integrals only depending on the dependent
variables, because our aim is to apply these first integrals to describe the dynamics
of the system in the phase space. Of course, we can consider first integrals including
also the independent variable. Since we want to study orbits in the phase space, we
consider here only the first integrals in the phase variables y.

For a given analytic system (1), as it is well known that if y = y0 is a regular
point, system (1) is analytically integrable around y0, i.e. it has n − 1 functionally
independent local analytic first integrals around y0. This argument can be verified
using the flow-box theorem or proved directly using the solution of the initial value
problem with the fixed initial time x0 and the initial values near y0. When y = y0 is
a singular point of system (1), the problem on existence of functionally independent

c©Yantao Yang and Xiang Zhang, 2023
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analytic or smooth first integrals becomes very difficult. In this case we can write
system (1), after possibly a translation, in the form

ẏ = Ay + f(y), f(y) = O(|y|2), (2)

where without loss of generality we can assume that A is in Jordan normal form.

Let Y be the vector field associated to this differential system, and set Y =
∞
∑

j=1
Yj ,

where Yj is the jth homogeneous part of Y.
As we will show that the existence and number of functionally independent first

integrals of system (2) in a neighborhood of the origin are strongly related to the
eigenvalues and their relations. Let λ = (λ1, . . . , λn) be the n-tuple of eigenvalues
of A. We say that λ is resonant if

R := {m ∈ Z
n
+| 〈m,λ〉 = 0, |m| ≥ 2} 6= ∅,

where Z+ is the set of nonnegative integers, and |m| = m1 + . . . + mn for m =
(m1, . . . ,mn) ∈ Z

n
+. The classical Poincaré theorem on integrability [17] states that

the analytic differential system (2) has no analytic or formal first integrals in a
neighborhood of the origin provided that the eigenvalues of A are not resonant. See
also [8, 21].

According to the classical result mentioned above by Poincaré, in order that
system (2) has an analytic first integral or a formal first integral near the origin, the
eigenvalues of A must be resonant.

1 Necessary conditions on existences of first integrals

In 2008, Chen, Yi and Zhang [2] obtained some necessary conditions on existence
and number of functionally independent analytic or formal first integrals.

Theorem 1. Assume that the number of Q+–linearly independent elements of R is
m. Then the analytic differential system (2) has at most m functionally independent
analytic or formal first integrals in a neighborhood of the origin.

The proof depends on the inductive calculations on analytic or formal first inte-
gral of the form

H(y) =

∞
∑

j=q

Hj(y)

with Hj homogeneous polynomials of degree j, via

L(Hq)(y) := 〈∇Hq, Ay〉 = 0,

L(Hj)(y) = −

j−q+1
∑

s=2

Ys(Hj−s+1), j = q + 1, . . .
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by inductive calculations together with the invertibility of the linear operator L on
each linear space formed by homogeneous polynomials of any given degree. For
all functionally independent analytic or formal first integrals H1, . . . ,Hm of sys-
tem (2), one can assume without loss of generality [34, 35] that their lowest parts
H0

1 (y), . . . ,H0
m(y) are functionally independent. For a proof, see e.g.[9]. Then the

problem is turned to the maximum number of functionally independent monomial
solutions of L(Hq)(y) = 0. The solutions of this problem is equivalent to the spec-
trum of the linear operator

L(Hℓ)(y) = ∇Hℓ(y)Ay

on the linear space Hℓ(y), formed by the homogeneous polynomial of degree ℓ in the n
variables y. By [12,31] the spectrum of L on Hℓ(y) is Rℓ := {m ∈ Z

n
+| 〈m,λ〉, |m| =

ℓ}.
In 2007 Shi [20] extended the Poincaré’s result to the existence of meromorphic

first integrals of the analytic differential system (2). Cong, Llibre and Zhang [6] fur-
ther developed Shi’s result to the version of Theorem 1 on the number of functionally
independent meromorphic first integrals.

Theorem 2. Assume that

RQ := {m ∈ Z
n| 〈m,λ〉 = 0, |m| = |m1| + . . . + |mn| ≥ 2}

contains r number of Q-linearly independent elements. Then system (2) has at most
r functionally independent meromorphic first integrals.

The proof adopts the ideas from those of Theorem 1. For functionally indepen-
dent meromorphic first integrals

H1(y) =
P1(y)

Q1(y)
, . . . , Hr(y) =

Pr(y)

Qr(y)

one can assume without loss of generality that the lowest order terms

H0
1 (y) =

P 0
1 (y)

Q0
1(y)

, . . . , H0
r (y) =

P 0
r (y)

Q0
r(y)

are functionally independent. For a proof see e.g.[6, Lemma 6], otherwise one can
take polynomials Wj(z1, . . . , zj) such that

H1(y), W2(H1,H2), . . . , Wr(H1, . . . ,Hr)

have their lowest order rational homogeneous parts being functionally independent.
Here the lowest order rational homogeneous part of a meromorphic function H(y) =
P (y)/Q(y) with P,Q analytic and having the expansions P (y) = P 0(y)+h.o.t and
Q(y) = Q0(y)+h.o.t is P 0(y)/Q0(y), because after expansion

H(y) =
P (y)

Q(y)
=

P 0(y)

Q0(y)
+

∞
∑

j=0

Aj(y)

Bj(y)
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one has

deg P 0(y) − deg Q0(y) < deg Aj(y) − deg Bj(y), for all j ≥ 1

where Aj, Bj ’s are homogeneous polynomials of degree j. Each Aj(y)
Bj(y)

is a rational

homogeneous function. The next proofs can be down in a similar way as those in
the proof of Theorem 1, by considering the linear operator defined by the linear part
of system (2) acting on the set of the lowest order rational homogeneous parts of
the meromorphic first integrals.

Associated to Theorems 1 and 2, Llibre, Walcher and Zhang [16] provided a
version on local Darboux first integrals of analytic differential systems via Poincaré-
Dulac normal form.

Theorems 1 and 2 establish only the necessary conditions on the existence of
analytic first integrals. As we know, it is really difficult to provide a sufficient
condition on existence of analytic first integrals. The typical one is the center-focus
problem in the general case. This is to characterize planar analytic differential
systems which have an equilibrium with a pair of pure imaginary eigenvalues. Of
course, in this case the two eigenvalues are Z+-resonant. But the problem whether
it admits an analytic first integral was solved only for quadratic differential systems.
See example [18,19,31].

2 Analytic normalization of local analytically integrable differential

systems

As it is well known, the sufficient condition for existence of functionally indepen-
dent first integrals is hard to be found for general planar analytic even polynomial
differential systems. Sometimes the equivalent characterization to analytic integra-
bility of analytic differential systems is helpful to determine local properties of the
system near an equilibrium. See for instance the next result by Poincaré.

To state the next result, we recall the definitions on Poincaré-Dulac normal form
and resonant terms. For system (2) in R

n with A in Jordan normal form, if the
n-tuple of eigenvalues λ of A have complex conjugate ones, saying for example λj

and λj+1 = λj , whose associated variables are yj and yj+1, we set zj = yj +
√
−1yj+1

and zj+1 = yj −
√
−1yj+1. For each real eigenvalue λs, whose associated variable ys

is replaced by zs. In these new coordinates, system (2) becomes

ż = Bz + g(z),

with B in lower triangular matrix. Its Poincaré-Dulac normal form system is the
one

ż = Bz + h(z),

with h(z) consisting of the resonant monomials. A monomial zkel in h(z), k ∈ Z
n
+,

l ∈ {1, . . . , n}, is resonant, if 〈k, λ〉 = λl, where el is the unique vector whose lth
component is 1 and all others are 0.
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In the next results, the Poincaré-Dulac normal form system is of the special form

ż = Bz(1 + ρ(z)), (3)

where ρ(z) consists of the monomials of the form zk satisfying 〈k, λ〉 = 0. We also
call the monomials in ρ(z) resonant ones. In the two dimensional case with complex
eigenvalues, if the eigenvalues are resonant, they must be conjugate pure imaginary
ones. Then each resonant monomial in ρ(z) must be of the form zk = zk1

1 zk2
2 =

(y2
1 + y2

2)
k1 , which is real. So when we write system (3) again in real coordinates

y = (y1, y2), one gets
ẏ = Ay(1 + ρ(y))

with ρ(y) consisting of resonant monomials, which are powers of y2
1 + y2

2.
Now we can state the next result.

Theorem 3. Assume that system (2) is two dimensional and A has a pair of pure
imaginary eigenvalues. Then the following statements hold.

(a) The origin is a center if and only if the system is analytically equivalent to its
Poincaré-Dulac normal form

ẏ = Ay(1 + ρ(y)),

where ρ(y) is an analytic function in y2
1 +y2

2. That is, ρ(y) consists of resonant
monomials.

(b) The origin is a center if and only if the system has an analytic first integral of
the form y2

1 + y2
2+h.o.t.

Statement (b) is useful in studying the center-focus problem. For a two dimen-
sional polynomial differential system of form (2) with the origin having a pair of pure
imaginary eigenvalues, one tries to find its Lyapunov quantities of the system at the
origin. According to the Hilbert’s basis theorem, among the Lyapunov quantities
there are only finitely many ones being independent, all the others are functions
of these finite ones. If these finite number of Lyapunov quantities vanish, then all
Lyapunov quantities vanish, and so the origin is a center. But the Hilbert’s basis
theorem does not provide a technique to compute this number. And using mathe-
matical softs one can compute only a small number of Lyapunov quantities. Setting
these Lyapunov quantities to be zero provides some conditions on the coefficients
of the system. Under these coefficient conditions, if we can find an analytic first
integral defined in a neighborhood of the origin, then the origin must be a center.

This classical result by Poincaré was extended to higher dimensional analytic
differential systems. We summarize the results on this kind of generalization. For
analytically integrable Hamiltonian systems in the Liouvillian sense, Ito [9,10] proved
the convergence of a symplectic normalization which sends the Hamiltonian system
to its Birkhoff normal form under a so-called strong one resonant condition on the
eigenvalues of the linearized system at the equilibrium. Zung [36] in 2005 proved
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in general that any analytically integrable differential system in Liouvillian sense
is analytically equivalent to its Birkhooff normal form via torus action. Ito [11]
extended further these results to supperintegrable Hamiltonian systems. On the
normal form theory, we refer the readers to Bibikov [1], Chow et al [5], Li [12] and
Zung [36,37] for more information on the general definitions and results.

Beside integrable Hamiltonian systems, Zung [37] in 2002 characterized the con-
vergence of the normalization of analytically integrable differential system to its
Poincaré-Dulac normal form via torus action. He did not present the concrete
representations of the normal form systems. In 2008, Zhang [28] proved the ex-
istence of analytic normalization of an analytically integrable differential system
to its Poincaré-Dulac normal form under the assumptions that the origin is non-
degenerate, and that the matrix A is diagonal. In 2013 Zhang [29] further released
these restrictions and obtained the next results.

Theorem 4. Assume that the n-tuple of eigenvalues λ = (λ1, . . . , λn) is not zero,
i.e. A has at least one eigenvalue not equal to zero. Then system (2) is analytically
integrable at the origin, i.e. it has n − 1 functionally independent analytic first
integrals in a neighborhood of the origin if and only if the resonant set R has n − 1
Q+ linearly independent elements and system (2) is analytically equivalent to its
distinguished normal form

ẏ = diag(λ1, . . . , λn)y(1 + g(y))

by a near identity analytic normalization, where g(y) has no a constant term and is
an analytic function in all resonant monomials ym with m ∈ R being Q+ linearly
independent elements.

Hereafter Q+ and Z+ are respectively the sets of nonnegative rational numbers
and of nonnegative integers.

The proof of sufficiency is very easy, but the proof of necessity is relatively
complicated. The proofs are separated in several steps. The first step is to get
the Poincaré-Dulac normal form, the second step is to prove that the analytic or
formal first integrals of the Poincaré-Dulac normal form system consist of resonant
monomials. By analytic integrability of the original system, one gets in the third
step the special form of the normal form system as mentioned in the theorem, and
that the eigenvalues of A does not satisfy the small divisor condition. The fourth
step is to present the concrete expressions of the coefficients of the normalization
and g(y) in terms of the coefficients of f(y) in (2), and use them to prove the
convergence of the normalization and g(y) by the majorant series and the implicit
function theorem.

We remark that Zhang [29] in 2013 also established a version of Theorem 4 for
analytically integrable diffeomorphims, where the normal form system has a much
involved structure. Some related results to Theorem 2 can also be founded in [15]
by Llibre, Pantazi and Walcher. In [16], Llibre et al studied also the effect of local
Darboux integrability on existence of analytic normalizations.
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On the relation between analytic normalization and analytic integrability of an-
alytic differential systems near an equilibrium, Wu and Zhang [24] extended these
results near an equilibrium to a periodic orbit of analytic autonomous differential
systems. Du, Romanovski and Zhang [7] further developed the above results to
partly integrable analytic differential systems.

The known results on characterization of local integrability near an equilibrium
were obtained by using the resonance of the eigenvalues of the linearized matrix of
the analytic differential system at the equilibrium. It is possible to obtain some
necessary conditions on analytic or meromorphic integrability by using the higher
order terms of the systems.

Open problem 1. How to apply the higher order terms of analytic differential
systems, beside their linear parts, to obtain more necessary conditions on existence
of sufficient number of functionally independent analytic or meromorphic first inte-
grals?

Because any smooth function of first integrals is also a first integral, this causes
difficulty in finding first integrals of a given analytic differential systems. Du, Ro-
manovski and Zhang [7] in 2016 provided the next result on the structure of first
integrals, which is very useful in finding the first integrals of a given analytic differ-
ential system.

Theorem 5. Let Y be the analytic vector field associated to system (2).

(a) There exists a series Ψ(y) such that

Y(Ψ)(y) =
∑

m∈R

vmym

where the sum takes over all possible resonant elements in R. vm’s are poly-
nomials in the coefficients of Y, and are called integrable varieties.

(b) If the vector field Y has ℓ functionally independent analytic or formal first
integrals, then Y has ℓ functionally independent first integrals of the form

H1(y) = α1y
m1 + h1(y), . . . , Hℓ(y) = αℓy

mℓ + hℓ(y),

where α1, . . . , αℓ ∈ R, m1, . . . ,mℓ ∈ Z
n
+ are Q+-linearly independent elements

of R, and each hj is composed of nonresonant monomials in y of degree larger
than mj.

We remark that in statement (a), the series Ψ(y) could consist of both reso-
nant monomials and nonresonant monomials, but its resonant monomials could be
arbitrarily chosen. Here a resonant monomial ym is the one with m ∈ R.

According to this result, we want to know whether there is a corresponding
version to Darboux polynomials of a polynomial differential system. If yes, it will
bring great simplification on the searching of Darboux polynomials, because any
product of Darboux polynomials is also a Darboux polynomial. Recall that for a
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polynomial vector field P(y), a polynomial f(y) is a Darboux polynomial of P if
there exists a polynomial k(y) such that

P(f)(y) = k(y)f(y),

with k(y) a cofactor of f(y).

Open problem 2. For polynomial differential systems, is there a result similar to
Theorem 5(b) on Darboux polynomials?

Recall that Darboux polynomials played an important role in characterizing local
and global dynamics of polynomial differential systems. For instance, if a polynomial
differential system has a sufficient number of Darboux polynomials, say f1, . . . , fp,
with the corresponding cofactors k1, . . . , kp satisfying

c1k1(y) + . . . + cpkp(y) = 0

with c1, . . . , cp ∈ C, then the polynomial differential system has a Darboux first
integral

H(y) = f c1
1 (y) · . . . · f

cp
p (y).

As we know [31], if a quadratic differential system has an equilibrium as a cen-
ter, then the system has a Darboux first integral defined in a neighborhood of the
equilibrium.

The first two sections provide some known results on necessary conditions for ex-
istence of functionally independent analytic or formal or meromorphic first integrals
of analytic differential systems, or on the equivalent characterization for existence
of analytic normalization via analytic integrability of analytic differential systems.
Next we recall some results on sufficient conditions for existence of a given type of
first integrals of analytic differential systems near an equilibrium.

3 Sufficient condition on existence of local first integrals

In this direction, there are lots of results, especially on center-focus problem for
concrete planar polynomial differential systems. But there are seldom systematic
results on general analytic differential systems. As we mentioned previously, in or-
der that system (2) have an analytic or a formal first integral around the origin,
the eigenvalues of A must be resonant. The simplest resonances are the cases that
there are two eigenvalues, say λ1, λ2, satisfying λ1/λ2 = −1 and the others are non-
resonant, and that one of the eigenvalues is zero, and the others are nonresonant.
The former is on the center-focus problem. As we know, there are lots of published
papers related to the center-focus problem. And also there have appeared many
published books summarizing these results. See e.g. Liu, Li and Huang [14], Ro-
manovski and Shafer [18], Ye [26, 27] and Zhang et al [33]. But as we knew, the
center-focus problem is far from being solved, even for cubic differential systems.

Here we recall the results on the latter, which has one zero eigenvalue and the
others are nonresonant. This work was initiated from 2003 by Li, Llibre and Zhang
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[13]. As before, let λ = (λ1, µ), with µ = (λ2, . . . , λn), be the n-tuple of eigenvalues
of A. Set

R0 :=
{

m ∈ Z
n−1
+ | λ1 = 0, 〈µ,m〉 = 0, |m| ≥ 2

}

.

The main results in [13] are the following.

Theorem 6. Assume that a system of form (2) is analytic and that R0 is empty,
i.e. µ does not satisfy any Q+-resonant condition. The following statements hold.

(a) When n = 1, 2, system (2) has an analytic first integral in a neighborhood of
the origin if and only if the equilibrium y = 0 is not isolated. That is, system
(2) has a curve passing the origin, which is full of equilibria.

(b) When n > 2, system (2) has a formal first integral around the origin if and
only if the equilibrium y = 0 is not isolated.

In one-dimensional case, there exists a unique eigenvalue, which is zero. So the
existence of analytic first integral implies that the system is trivial.

In two-dimensional case, the existence of analytic first integral forces by Theorem
5(b) the existence of analytic first integral of the form

H(y) = y1 + h1(y)

with h1 consisting of higher order terms. Then after the near identity transformation
z = (z1, z2) = β(y) := (y1 + h1(y), y2), system (2) is equivalently changed to

ż1 = 0, ż2 = ẏ2 = λ2z2 + f2(β
−1z)

Clearly, this last system has the analytic curve λ2z2 + f2(β
−1z) = 0 being full

of equilibria, and consequently system (2) has a curve filled up with equilibria.
Conversely, λ2y2 + f2(y) = 0 has an analytic solution, saying y2 = ζ2(y1), such that
f1(y1, ζ2(y1) ≡ 0 in a neighborhood of the origin. Then the original system can be
written in

ẏ1 = (y2 − ζ2(y1))g1(y), ẏ2 = λ2(y2 − ζ2(y1))g2(y).

Comparing with the original system gives that g2(y) = 1+h.o.t. and this last system
has the same first integral as that of

ẏ1 = g1(y), ẏ2 = λ2g2(y).

Its origin is regular, and so it has an analytic first integral near the origin. Hence
the original system has an analytic first integral in a neighborhood of the origin.

For higher dimensional system, the proof of (b) follows from the Poincaré-Dulac
normal form via a sufficiently higher order cut of the formal transformation, and
the order of an isolated equilibrium is independent of the choice of a near identity
analytic transformation.

After this result was published in 2003, a long time has passed in before we
could determine whether the formal first integral in statement (b) of Theorem 6(b)
could be replaced by some first integrals with suitable regularity. Zhang [30] in 2017
answered this problem under suitable conditions on the nonresonant eigenvalues of
A.
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Theorem 7. Assume that the elements of µ either all have positive real parts or all
have negative real parts. Then system (2) has an analytic first integral at the origin
if and only if the equilibrium y = 0 is not isolated.

The proof of the necessity follows from statement (b) of Theorem 6, or can be
proved independently using the result in Theorem 5(b). The sufficiency could be
proved using the existence of an analytic invariant manifold along the curve filled
up with the equilibria and the normal form system.

Theorem 7 has a C∞ version, see Theorem 2 of Zhang [30]. But when the
eigenvalues µ have both positive real parts and negative real part, as shown in
Theorem 3(b2) of [30], there exist systems of form (2) which have no analytic first
integrals defined in a neighborhood of the origin. Then one has to ask: under this
last condition, does system (2) have C∞ first integrals in a neighborhood of the
origin. Zhang [32] had worked on this problem.

Recently, this kind of study has been developed to Gevrey systems of form (2)
with µ nonresonance, see [25]. For more information on Gevrey smoothness, see e.g.
Stolovitch [22] and Wu et al [23]. As usual, the classes C∞ or Gs for s ≥ 1 denote the
sets of functions C∞ or Gevrey-s smooth. Particularly G1 is the analytic functional
class, and G1 ⊆ Gs(s ≥ 1) ⊆ C∞ and C∞ ⊆ F

n[[x]] the set of n dimensional formal
series. Now denote the resonant set by

Λr =
{

(j, k, l)
∣

∣ 〈k, µ〉 = µl, j + |k| ≥ 2, k ∈ Z
n−1
+ , j ∈ Z+, l ∈ {2, . . . , n}

}

.

Under the condition that the equilibrium y = 0 is not isolated, system (2) can be
written in

dy1

dx
= f̂1(y1, z),

dz

dx
= A0z + f̂2(y1, z), (4)

with z = (y2, . . . , yn), A0 having the eigenvalues µ, and f̂1(y1, 0) ≡ 0 and f̂2(y1, 0) ≡
0. Moreover, its Poincaré-Dulac formal normal form system is

dy1

dx
= 0,

dz

dx
= A0z + g(y1, z), (5)

where g(y1, z) =
∑

j,k,l∈Λr
g(j,k),ly

j
1z

kel with el the l-th unit vector. Set

q = min{|k|
∣

∣ (j, k, l) ∈ Λr, g(j,k),l 6= 0, ∃j, l}, (6)

and

q∗ = min{j + |k|
∣

∣ (j, k, l) ∈ Λr, g(j,k),l 6= 0, ∃l}. (7)

Formulating a function Φ as

c−1Φ(t) = max{|k · λ|−1
∣

∣ |k| ≤ t, k ∈ Z
d
+}, (8)

with c a normalized parameter such that Φ(1) = 1. Of course, when Φ(t) = tµ, it
is of the diophantine type. Next results from [25] characterize the (formal) Gevrey
integrability via the diophantine type small divisor condition.
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Theorem 8. Assume that system (2) is of Gevrey-s smooth with the origin as a
nonisolated equilibrium, and µ nonresonant. Then the following statements hold.

(a) If A0 has its eigenvalues all with positive real parts or all with negative real
parts, then system (2) has a local Gevrey-s smooth first integral whose formal
series is not trivial.

(b) Assume that A is diagonal , and Φ(t) = tµ with µ > 0 a constant.

(b1) If ∂z f̂2(y1, 0) ≡ 0 in (4) and q < ∞ defined in (6), there exists a local
Gevrey-s∗ smooth first integrals with nontrivial formal series, where s∗ =
max{s, (µ + q)/(q − 1)}.

(b2) If q∗ < ∞ defined in (7), there exists a nontrivial formal Gevrey-s∗ first
integral, where s∗ = max{s − 1, (µ + 1)/(q∗ − 1)}.

The proof will be done by using the homological equation, KAM theory, the
Gevrey norm of functions and majorant Gevrey series together with lots of estima-
tions.

After Theorem 8 we naturally have the next questions.
Open problem 3. Among analytic differential systems of form (1) satisfying that
R0 is empty, and the origin is a nonisolated equilibrium and that µ have both
elements with positive and negative real parts,

(a) what is the subset in which all systems have analytic first integrals in a neigh-
borhood of the origin?

(b) what is the subset in which all systems have Gevrey first integrals in a neigh-
borhood of the origin?
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The bifurcation diagram of the configurations of

invariant lines of total multiplicity exactly three in

quadratic vector fields
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Abstract. We denote by QSL3 the family of quadratic differential systems possess-
ing invariant straight lines, finite and infinite, of total multiplicity exactly three. In a
sequence of papers the complete study of quadratic systems with invariant lines of to-
tal multiplicity at least four was achieved. In addition three more families of quadratic
systems possessing invariant lines of total multiplicity at least three were also studied,
among them the Lotka-Volterra family. However there were still systems in QSL3

missing from all these studies. The goals of this article are: to complete the study of
the geometric configurations of invariant lines of QSL3 by studying all the remaining
cases and to give the full classification of this family modulo their configurations of
invariant lines together with their bifurcation diagram. The family QSL3 has a total
of 81 distinct configurations of invariant lines. This classification is done in affine
invariant terms and we also present the bifurcation diagram of these configurations
in the 12-parameter space of coefficients of the systems. This diagram provides an
algorithm for deciding for any given system whether it belongs to QSL3 and in case
it does, by producing its configuration of invariant straight lines.

Mathematics subject classification: 34C23, 34A34.
Keywords and phrases: quadratic differential system, invariant line, singularity,
configuration of invariant lines, group action, polynomial invariant.

1 Introduction and the statement of the Main Theorem

We consider here real planar differential systems of the form

(S)
dx

dt
= p(x, y),

dy

dt
= q(x, y), (1)

where p, q ∈ R[x, y], i.e. p, q are polynomials in x, y over R. We call degree of a
system (S) the integer deg(S) = max(deg(P ),deg(Q)). We call quadratic (respec-
tively cubic) differential system such a polynomial system of degree two (respectively
three). We shall sometimes use quadratic system instead of quadratic differential
system. Each such system generates a complex differential vector field when the
dependent variables range over C.

Of the three classical problems on these systems, Hilbert’s 16th problem, the
problem of Poincaré and the problem of the center, only the last one was solved
for the family QS of quadratic differential systems. Although it is the simplest
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non-linear class of polynomial systems we are still far from understanding this fam-
ily. To gain insight into this family, in recent years subfamilies of QS began to be
studied from a global viewpoint using a variety of methods, among them algebraic
and geometric or analytical, also numerical or involving substantial symbolic cal-
culations. In particular families of quadratic systems possessing invariant algebraic
curves began to be studied, the simplest ones being those possessing invariant lines.

Every system in QS possesses an invariant line, the line at infinity. This line
could be simple or multiple, in which case producing several distinct lines in pertur-
bations.

The notion of multiplicity of an invariant line of a system (1) has been introduced
in [9]. This concept was extended to the notion of multiplicity of an invariant
algebraic curve of a differential system. In the fundamental article [6] several notions
of multiplicity of an invariant algebraic curve of a polynomial system were introduced
and they were proven to be equivalent in the case of algebraic solutions which are
algebraic invariant curves defined by polynomials that are irreducible over C. If a
system has a finite number of invariant lines fi(x, y) = 0, i = 1, ..., k, of respective
multiplicities m1, ...,mk, we call total multiplicity of the invariant lines of (S), the
number M =

∑

imi +m∞ where m∞ is the multiplicity of the line at infinity. Since
in any system (1) the line at infinity is invariant we always have m∞ ≥ 1 and in
particular we have this for any system in QS.

At the beginning of this century a systematic study of non-degenerate quadratic
systems possessing invariant algebraic curves was initiated by Schlomiuk and Vulpe.
In the series of articles [9,11,13,14] the authors studied the class QSL≥4 of quadratic
systems having invariant lines, including the line at infinity, of total multiplicity at
least four. We see in [9] that the maximum number of invariant lines, including the
line at infinity, of non-degenerate quadratic systems is six.

This study was based on the notion of configuration of invariant lines of a real
polynomial differential system defined in [14]. We recall here this definition.

Definition 1. Consider a real polynomial differential system (S) endowed with a
finite number of invariant algebraic curves fi(x, y) = 0, i = 1, . . . , k, over C. We call
configuration of invariant curves of (S) the set of curves f1 = 0, . . . , fk = 0 and the
line at infinity, each endowed with its own multiplicity, together with all the real
singular points of (S) situated on these curves, each one of them endowed with its
own multiplicity.

The notion of configuration is an affine invariant which is a powerful classification
tool. This was clearly seen in the way the topological classification was obtained for
the Lotka-Volterra systems which have a total of 112 phase portraits. The geometry
of configurations acts like a guiding light to fray our way through this maze of
phase portraits. Thus we first obtained the geometric classification by splitting the
class according to their 65 distinct configurations of invariant lines that the systems
possess. Then we classified topologically each one of these 65 families.

In order to classify all the configurations of the family QSL3 we first need to say
when two configurations C1, C2 of invariant lines of two quadratic systems (S1) and
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(S2) are to be considered as distinct, respectively when two such configurations are
to be considered equivalent.

Consider two polynomial differential systems (S1) and (S2) such that each has
a finite set of singular points and a finite set of invariant lines, including the line at
infinity. Let C1, C2 be the two configurations of invariant lines of (S1) and (S2).

Definition 2. We say that two configurations C1, C2, of (S1) and (S2) formed by
invariant lines (including the line at infinity) are equivalent if and only if there is
a bijection φ between the two sets of invariant lines sending the line at infinity of
C1 to the line at infinity of C2, sending a line with coefficients in R of (S1) to a
line with coefficients in R of (S2). In addition the map preserves the multiplicities
of the invariant lines, and for each invariant line L of C1 there is a one-to-one
correspondence φL between the set of real singular points of (S1) situated on the line
L and the set of real singular points of the system (S2) situated on the line φ(L) which
preserves the multiplicities of the singular points and sends a real singular point at
infinity to a real singular point at infinity. In addition we have the following:

(i) When we list in a counterclockwise sense the real singular points at infinity
on (S1) starting from a point p on the Poincaré disk, p1 = p, ..., pl, this correspon-
dence preserves the multiplicities of the singular points and preserves or reverses the
orientation.

(ii) We consider the total curves

F :
∏

Fj(X;Y ;Z)miZm = 0; F ′ :
∏

F ′
j(X;Y ;Z)m

′
iZm′

= 0

where Fi(X;Y ;Z) = 0 (respectively F ′
i (X;Y ;Z) = 0) are the projective completions

of the lines Li (respectively L′
i) andmi, m

′
i are the multiplicities of the curves Fi = 0,

F ′
i = 0 and m, m′ are respectively the multiplicities of Z = 0 in the first and in

the second system. Then, there is a one-to-one correspondence between the real
singularities of the curves F and F ′ conserving their multiplicities as singular points
of the total curves.

After the study of the family QSL≥4 mentioned above, the next step is the study
of the subfamily QSL3 of QS which is the family of all non-degenerate quadratic
differential systems with invariant lines of total multiplicity three. The study of this
class began with work on the Lotka-Volterra systems (shortly L-V systems), a family
important for applications. (Previous literature on L-V systems systems is also
mentioned in [16,17].) This is the class of all quadratic differential systems that have
two real invariant lines intersecting at a finite point. In [16,17] the authors completed
the study of this class by giving its bifurcation diagram in the 12-dimensional space
of the coefficients of quadratic systems (1).

The family QSL3 splits into several subfamilies of QS according to the geometry
of the systems, one of them being the L-V systems. Another subfamily of QSL3

is the family of non-degenerate real quadratic systems possessing two complex in-
variant lines intersecting at a (real) finite point. The topological classification for
this family was done in [19] but without using the configurations of invariant lines.
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The bifurcation diagram in terms of invariant polynomials was done in [3]. But the
configurations of invariant lines for systems in this family and occurring in QSL3

are presented here for the first time.
In [5] one more subfamily of QSL3 was studied. More exactly, in [5] the authors

made the study of the family QSL
2p of quadratic systems possessing one of the

following defining properties: two parallel invariant lines or a unique affine line that
is double, or an affine invariant line and the double line at infinity or the triple line
at infinity.

However, we still have quadratic systems in QSL3 that were not mentioned so
far. These are quadratic differential systems in QSL3 that are limit points of the
L-V systems.

Indeed such systems could be obtained from a generic L-V system using one of
the following three possibilities:

(i) Two simple invariant lines of a L-V-system from the subfamily QSL3 coa-
lesced giving a double invariant line and a multiple real singular point at infinity.

(ii) One simple invariant line of a L-V system from the subfamily QSL3 coalesced
with infinite line Z = 0 giving a double infinite invariant line with the second
invariant line remaining in the finite part of the phase plane.

(iii) Both simple invariant lines of a L-V system from the subfamily QSL3

coalesced with infinite line Z = 0 producing a triple line at infinity.

The goal of this paper is to complete the study of the configurations of invariant
lines of family QSL3 and to present all possible configurations of invariant lines
which a non-degenerate quadratic system from the class QSL3 could have. Our
main results are summed up in the following theorem:
Main Theorem. The following statements hold:

(i) The family QSL3 possesses a total of 81 distinct configurations of invariant
lines given in Figure 1.

(ii) The classification of the family QSL3 is done using algebraic invariants and
hence it is independent of the normal forms in which the systems may be
presented.

(iii) The ”bifurcation” diagram of the configurations of invariant lines for systems
in the family QSL3 is done in the twelve-dimensional parameter space R

12

and it is presented in Diagrams 1 and 2. These diagrams give us an algorithm
by determining for any given system if it belongs or not to the family QSL3

and in case it belongs to this family, it gives us the specific configuration of
invariant lines.

2 The main invariant polynomials associated to the class QSL3

We consider the class of real quadratic polynomial differential systems

ẋ = p0 + p1(x, y) + p2(x, y) ≡ P (ã, x, y),

ẏ = q0 + q1(x, y) + q2(x, y) ≡ Q(ã, x, y)
(2)
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Figure 1. The configurations of quadratic systems in QSL3

where
p0 = a, p1(x, y) = cx+ dy, p2(x, y) = gx2 + 2hxy + ky2,

q0 = b, q1(x, y) = ex+ fy, q2(x, y) = lx2 + 2mxy + ny2
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Figure 1 (continuation). The configurations of quadratic systems in QSL3

and with max(deg(p),deg(q)) = 2. It is known that on the set QS the group
Aff (2,R) of affine transformations on the plane acts (cf. [10]). For every subgroup
G ⊆ Aff (2,R) we have an induced action of G on QS . We can identify the set QS
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Figure 1 (continuation). The configurations of quadratic systems in QSL3

of systems (2) with a subset of R
12 via the map QS −→ R

12 which associates to
each system (2) the 12–tuple ã = (a, c, d, g, h, k, b, e, f, l,m, n) of its coefficients. We
associate to this group action polynomials in x, y and parameters which behave well
with respect to this action, the GL–comitants (GL–invariants), the T–comitants
(affine invariants) and the CT–comitants. For their definitions as well as their
detailed constructions we refer the reader to the paper [10] (see also [1]).

According to [1] (see also [4]) we apply the differential operator L = x ·L2−y ·L1



CONFIGURATIONS OF INVARIANT LINES FOR QUADRATIC VECTOR FIELDS 49

Diagram 1: The configurations of systems in QSL with B1 = 0 and B2 6= 0

acting on R[ã, x, y] with

L1 =2a
∂

∂c
+ c

∂

∂g
+

1

2
d
∂

∂h
+ 2b

∂

∂e
+ e

∂

∂l
+

1

2
f
∂

∂m
,

L2 =2a
∂

∂d
+ d

∂

∂k
+

1

2
c
∂

∂h
+ 2b

∂

∂f
+ f

∂

∂n
+

1

2
e
∂

∂m
,

to construct several needed invariant polynomials. More precisely using this



50 BUJAC C., SCHLOMIUK D., VULPE N.

Diagram 1 (continuation): The configurations of systems in QSL with B1 = 0 and
B2 6= 0

operator and the affine invariant µ0 = Res x

(

p2(ã, x, y), q2(ã, x, y)
)

/y4 we construct
the following polynomials

µi(ã, x, y) =
1

i!
L(i)(µ0), i = 1, .., 4, where L(i)(µ0) = L(L(i−1)(µ0)).
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Diagram 1 (continuation): The configurations of systems in QSL with B1 = 0 and
B2 6= 0

Using these invariant polynomials we define some new ones, which according to [1]
are responsible for the number and multiplicities of the finite singular points of (2):

D =
[

3
(

(µ3, µ3)
(2), µ2

)(2)
−

(

6µ0µ4 − 3µ1µ3 + µ2
2, µ4

)(4)
]

/48,

P = 12µ0µ4 − 3µ1µ3 + µ2
2,

R = 3µ2
1 − 8µ0µ2,

S =R
2 − 16µ2

0P,

T = 18µ2
0(3µ

2
3 − 8µ2µ4) + 2µ0(2µ

3
2 − 9µ1µ2µ3 + 27µ2

1µ4) − PR,

U =µ2
3 − 4µ2µ4.

In what follows we also need the so-called transvectant of order k (see [7, 8]) of
two polynomials f, g ∈ R[ã, x, y]

(f, g)(k) =

k
∑

h=0

(−1)h
(

k

h

)

∂kf

∂xk−h∂yh

∂kg

∂xh∂yk−h
.

In order to construct the invariant polynomials for the classification of this class
of systems we first need to define some elementary bricks which help us to construct
these elements of the set.

We remark that the following polynomials in R[ã, x, y] are the simplest invari-
ant polynomials of degree one with respect to the coefficients of the differential
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Diagram 2 : The configurations of systems in QSL with B2 = 0 and B3 6= 0

systems (2) which are GL-comitants:

Ci(x, y) = ypi(x, y) − xqi(x, y), i = 0, 1, 2;

Di(x, y) =
∂

∂x
pi(x, y) +

∂

∂y
qi(x, y), i = 1, 2.
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Diagram 2 (continuation): The configurations of systems in QSL with B2 = 0 and
B3 6= 0

Apart from these simple invariant polynomials we shall also make use of the following
nine GL-invariant polynomials:

T1 = (C0, C1)
(1) , T2 = (C0, C2)

(1) , T3 = (C0,D2)
(1) ,

T4 = (C1, C1)
(2) , T5 = (C1, C2)

(1) , T6 = (C1, C2)
(2) ,

T7 = (C1,D2)
(1) , T8 = (C2, C2)

(2) , T9 = (C2,D2)
(1) .
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Diagram 2 (continuation): The configurations of systems in QSL with B2 = 0 and
B3 6= 0

These are of degree two with respect to the coefficients of systems (2).

We next define a list of T -comitants:

Â(ã) = (C1, T8 − 2T9 +D2
2)

(2)/144,

̂B(ã, x, y) =
{

16D1(D2, T8)
(1)(3C1D1 − 2C0D2 + 4T2) + 32C0(D2, T9)

(1)(3D1D2

− 5T6+ 9T7) + 2(D2, T9)
(1)

(

27C1T4− 18C1D
2
1−32D1T2+32(C0, T5)

(1)
)

+ 6(D2, T7)
(1)

[

8C0(T8 − 12T9) − 12C1(D1D2+T7) +D1(26C2D1+32T5)

+ C2(9T4 + 96T3)
]

+ 6(D2, T6)
(1)

[

32C0T9 − C1(12T7 + 52D1D2)

− 32C2D
2
1

]

+ 48D2(D2, T1)
(1)(2D2

2 − T8) + 6D1D2T4(T8 − 7D2
2 − 42T9)

− 32D1T8(D2, T2)
(1) + 9D2

2T4(T6 − 2T7) − 16D1(C2, T8)
(1)(D2

1 + 4T3)

+ 12D1(C1, T8)
(2)(C1D2 − 2C2D1) + 12D1(C1, T8)

(1)(T7 + 2D1D2)

+ 96D2
2

[

D1(C1, T6t)
(1) +D2(C0, T6)

(1)
]

− 4D3
1D2(D

2
2 + 3T8 + 6T9)

− 16D1D2T3(2D
2
2+3T8) + 6D2

1D
2
2(7T6+2T7)−252D1D2T4T9

}

/(2833),

̂E(ã, x, y) =
[

D1(2T9 − T8) − 3(C1, T9)
(1) −D2(3T7 +D1D2)

]

/72,

̂F (ã, x, y) =
[

6D2
1(D

2
2 − 4T9) + 4D1D2(T6 + 6T7) + 48C0(D2, T9)

(1) − 9D2
2T4

+ 288D1
̂E − 24(C2, ̂D)(2) + 120(D2, ̂D)(1) − 36C1(D2, T7)

(1)

+ 8D1(D2, T5)
(1)

]

/144,
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̂K(ã, x, y) = (T8 + 4T9 + 4D2
2)/72,

̂H(ã, x, y) = (−T8 + 8T9 + 2D2
2)/72,

as well as the following affine invariants (which serve as bricks for constructing the
needed invariant polynomials):

A2(ã) = (C2, ̂D)(3)/12, A17(ã) =
(

(( ̂D, ̂D)(2),D2

)(1)
,D2

)(1)
/64,

A18(ã) =
(

( ̂D, ̂F )(2),D2

)(1)
/16, A19(ã) =

(

( ̂D, ̂D
)(2)

, ̂H
)(2)

/16,

A20(ã) =
(

(C2, ̂D)(2), ̂F
)(2)

/16.

Next we present here the list of invariant polynomials which are necessary for
the classification of the configurations of invariant lines for the family QSL3:

˜K(ã, x, y) =4 ̂K ≡ Jacob
(

p2(ã, x, y), q2(ã, x, y)
)

,

˜M(ã, x, y) = (C2, C2)
(2) ≡ 2Hess

(

C2(ã, x, y)
)

,

˜N(ã, x, y) = ˜K − 4 ̂H,

˜D(ã, x, y) = ̂D,

η(ã) = (˜M, ˜M)(2)/384 ≡ Discrim
(

C2(ã, x, y)
)

,

θ(ã) = − ( ˜N, ˜N)(2)/2 ≡ Discrim
(

˜N(ã, x, y)
)

;

B1(ã) =Res x

(

C2, ˜D
)

/y9 = −2−93−8 (B2, B3)
(4) ,

B2(ã, x, y) = (B3, B3)
(2) − 6B3(C2, ˜D)(3),

B3(ã, x, y) = (C2, ˜D)(1) ≡ Jacob
(

C2, ˜D
)

,

H1(ã) = −
(

(C2, C2)
(2), C2)

(1), ˜D
)(3)

,

H3(ã, x, y) =(C2, ˜D)(2),

H4(ã) =
(

(C2, ˜D)(2), (C2,D2)
(1)

)(2)
,

H6(ã, x, y) =16N2(C2, ˜D)(2) +H2
2 (C2, C2)

(2),

H7(ã) = ( ˜N,C1)
(2),

H8(ã) =9
(

(C2, ˜D)(2), ( ˜D,D2)
(1)

)(2)
+ 2

[

(C2, ˜D)(3)
]2
,

H9(ã) = − [[ ˜D, ˜D)(2), ˜D,
)(1)

, ˜D
)(3)

,

H10(ã) =
(

( ˜N, ˜D)(2), D2

)(1)
,

H11(ã, x, y) =8 ̂H
[

(C2, ˜D)(2) + 8( ˜D,D2)
(1)

]

+ 3
[

(C1, 2 ̂H − ˜N)(1) − 2D1
˜N
]2
,

H13(ã, x, y) =A1A2 −A14 −A15,

H14(ã, x, y) =A2(156A5 − 20A3 − 33A4) + 4(99A1A6 − 5A22 + 42A23 − 21A24),

H15(ã) =
(

( ˜D, ˜D)(2), ˜H
)(1)

,

H17(ã) =2A2
2 − 16A17 − 16A18 + 12A19 − 2A20,
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N1(ã, x, y) =C1(C2, C2)
(2) − 2C2(C1, C2)

(2),

N2(ã, x, y) =D1(C1, C2)
(2) −

(

(C2, C2)
(2), C0

)(1)
,

N3(ã, x, y) = (C2, C1)
(1) ,

N4(ã, x, y) =4 (C2, C0)
(1) − 3C1D1,

N5(ã, x, y) =
[

(D2, C1)
(1) +D1D2

]2
− 4

(

C2, C2

)(2)(
C0,D2

)(1)
,

N6(ã, x, y) =8D + C2

[

8(C0,D2)
(1) − 3(C1, C1)

(2) + 2D2
1

]

.

3 Preliminary results involving the use of polynomial invariants

The following two lemmas reveal the geometrical meaning of the invariant poly-
nomials B1, B2, B3, θ and ˜N .

Lemma 1. [9] For the existence of an invariant straight line in one (respectively 2
or 3 distinct) directions in the affine plane it is necessary that B1 = 0 (respectively
B2 = 0 or B3 = 0).

Lemma 2. [9] A necessary condition for the existence of one couple (respectively,
two couples) of parallel invariant straight lines of a system (2) corresponding to
a ∈ R

12 is the condition θ(a) = 0 (respectively, ˜N(a, x, y) = 0).

We remark that the invariant polynomials µi(ã, x, y) (i = 0, 1, . . . , 4) defined
earlier (see page 50) are responsible for the total multiplicity of the finite singular-
ities of quadratic systems (2). Moreover they detect whether a quadratic system is
degenerate or not as well as the coordinates of infinite singularities that result after
the coalescence of finite singularities with an infinite one. More exactly according
to [1, Lemma 5.2] we have the following lemma.

Lemma 3. Consider a quadratic system (S) with coefficients a ∈ R
12. Then:

(i) The total multiplicity of the finite singularities of this system is 4 − k if and
only if for every i such that 0 ≤ i ≤ k − 1 we have µi(a, x, y) = 0 in R[x, y]
and µk(a, x, y) 6= 0.

In this case the factorization µk(a, x, y) =
∏k

i=1(uix− viy) 6= 0 over C yields
the coordinates [vi : ui : 0] of points at infinity that have multiplicity greater
than one, this being the result of coalescence of finite and infinite singularities.
Moreover the number of distinct expressions uix − viy in this factorization
is less than or equal to three (the maximum number of infinite singularities
of a quadratic system), and the multiplicity of each one of the expressions
uix− viy gives us the number of the finite singularities of the system (S) that
have coalesced with the infinite singular point [vi : ui : 0].

(ii) Let the point M0(0, 0) be a singular point for the quadratic system (S). Then
the point M0(0, 0) is a singular point of multiplicity k (1 ≤ k ≤ 4) if and only
if for every i such that 0 ≤ i ≤ k − 1 we have µ4−i(a, x, y) = 0 in R[x, y] and
µ4−k(a, x, y) 6= 0.
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(iii) The system (S) is degenerate (i.e. gcd(p, q) 6= constant) if and only if
µi(a, x, y) = 0 in R[x, y] for every i = 0, 1, 2, 3, 4.

On the other hand the invariant polynomials η, ˜M and C2 govern the number
of real and complex infinite singularities. More precisely, according to [18] (see
also [10]) we have the next result.

Lemma 4. The number of infinite singularities (real and complex) of a quadratic
system in QS is determined by the following conditions:

(i) 3 real if η > 0;

(ii) 1 real and 2 imaginary if η < 0;

(iii) 2 real if η = 0 and ˜M 6= 0;

(iv) 1 real if η = ˜M = 0 and C2 6= 0;

(v) ∞ if η = ˜M = C2 = 0.

Moreover, the quadratic systems (2), for each one of these cases, can be brought via
a linear transformation to the corresponding case of the following canonical systems
(SI) − (SV ):

{

ẋ = a+ cx+ dy + gx2 + (h− 1)xy,

ẏ = b+ ex+ fy + (g − 1)xy + hy2;
(SI)

{

ẋ = a+ cx+ dy + gx2 + (h+ 1)xy,

ẏ = b+ ex+ fy − x2 + gxy + hy2;
(SII)

{

ẋ = a+ cx+ dy + gx2 + hxy,

ẏ = b+ ex+ fy + (g − 1)xy + hy2;
(SIII)

{

ẋ = a+ cx+ dy + gx2 + hxy,

ẏ = b+ ex+ fy − x2 + gxy + hy2;
(SIV )

{

ẋ = a+ cx+ dy + x2,

ẏ = b+ ex+ fy + xy.
(SV )

Remark 1. In order to describe the various kinds of multiplicity for infinite singular
points we use the concepts and notations introduced in [9]. Thus we denote by
“(a, b)” the ordered couple of a, respectively b, where a (respectively b) is the max-
imum number of infinite (respectively finite) singularities which can be obtained by
perturbation of a multiple infinite singular point.

Now we define the affine comitants which are responsible for the existence of
invariant lines for a non-degenerate quadratic system (2).

Let us apply a translation x = x′ + x0, y = y′ + y0 to the polynomials
p(ã, x, y) and q(ã, x, y). We obtain p̂(â(ã, x0, y0), x

′, y′) = p(ã, x′ + x0, y
′ + y0),
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q̂(â(ã, x0, y0), x
′, y′) = q(ã, x′ + x0, y

′ + y0). Let us construct the following poly-
nomials

Γi(ã, x0, y0) ≡ Res x′

(

Ci

(

â(ã, x0, y0), x
′, y′

)

, C0

(

â(ã, x0, y0), x
′, y′

)

)

/(y′)i+1,

Γi(ã, x0, y0) ∈ R[ã, x0, y0], i = 1, 2.

Notation 1.

Ẽi(ã, x, y) = Γi(ã, x0, y0)|{x0=x, y0=y} ∈ R[ã, x, y] (i = 1, 2).

Observation 1. We note that the constructed polynomials Ẽ1(ã, x, y) and Ẽ2(ã, x, y)
are affine comitants of systems (2) and are homogeneous polynomials in the coeffi-
cients a, . . . , n and non-homogeneous in x, y and

degã Ẽ1 = 3, deg (x,y) Ẽ1 = 5, degã Ẽ2 = 4, deg (x,y) Ẽ2 = 6.

Notation 2.
Let Ei(ã,X, Y, Z) (i = 1, 2) be the homogenization of Ẽi(ã, x, y), i.e.

E1(ã,X, Y, Z) = Z5Ẽ1(ã,X/Z, Y/Z), E2(ã,X, Y, Z) = Z6Ẽ2(ã,X/Z, Y/Z)

and H(ã,X, Y, Z) = gcd
(

E1(ã,X, Y, Z), E2(ã,X, Y, Z)
)

in R[ã,X, Y, Z].

The geometrical meaning of these affine comitants is given by the two following
lemmas (see [9]):

Lemma 5. [9] The straight line L(x, y) ≡ ux+vy+w = 0, u, v,w ∈ C, (u, v) 6= (0, 0)
is an invariant line for a quadratic system (2) if and only if the polynomial L(x, y)
is a common factor of the polynomials Ẽ1(a, x, y) and Ẽ2(a, x, y) over C, i.e.

Ẽi(a, x, y) = (ux+ vy + w)˜Wi(x, y) (i = 1, 2),

where ˜Wi(x, y) ∈ C[x, y].

Lemma 6. 1) If L(x, y) ≡ ux+vy+w = 0, u, v,w ∈ C, (u, v) 6= (0, 0) is an invariant
straight line of multiplicity k for a quadratic system (2) then [L(x, y)]k | gcd(Ẽ1, Ẽ2)
in C[x, y], i.e. there exist Wi(a, x, y) ∈ C[x, y] (i = 1, 2) such that

Ẽi(a, x, y) = (ux+ vy + w)kWi(a, x, y), i = 1, 2.

2) If the line l∞ : Z = 0 is of multiplicity k > 1 then Zk−1 | gcd(E1, E2), in other
words we have Zk−1 | H(a,X, Y, Z).

In what follows the following Lemma will be useful.

Lemma 7. The non-singular invariant line at infinity for a non-degenerate quadratic
system has the multiplicity greater than or equal to two if and only if the condition
˜K = 0 holds.
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Proof. Considering Lemma 6 (see statement 2) we deduce that the line at infinity
of a quadratic system is of multiplicity > 1 if and only if Z | gcd(E1, E2). In other
words Z is a common factor of the polynomials E1(X,Y,Z) and E2(X,Y,Z) (see
Notation 2).

Taking into account the definition of the invariant polynomials E1(X,Y,Z) and
E2(X,Y,Z) (see Notations 1 and 2) for systems (2) we calculate

E1(X,Y,Z) =
1

2
C2(X,Y ) ˜K(X,Y ) + φ1(X,Y )Z + φ2(X,Y )Z2 + . . .+ φ5(X,Y )Z5,

E2(X,Y,Z) =C2(X,Y )Ψ(X,Y ) + ψ1(X,Y )Z + ψ2(X,Y )Z2 + . . . + ψ6(X,Y )Z6,

where

C2(X,Y ) = − lX3 + (g − 2m)X2Y + (2h − n)XY 2 + kY 3,

˜K(X,Y ) = 4
[

(gm− hl)X2 + (gn − kl)XY + (hn − km)Y 2
]

≡ 4
[

αX2 + βXY + γY 2
]

,

Ψ(X,Y ) = (2gα + lβ)X3 +
[

(4h + 2n)α+ gβ + 4lγ
]

X2Y

+
[

2kα+ (2h+ n)β + 4mγ
]

XY 2 + (kβ + 2nγ)Y 3.

Therefore we conclude that the invariant polynomials E1(X,Y,Z) and E2(X,Y,Z)
have the common factor Z if and only if the conditions C2(X,Y ) ˜K(X,Y ) =
C2(X,Y )Ψ(X,Y ) = 0 hold. Since C2 = 0 leads to systems with the line at in-
finity filled up with singularities (see Lemma 4) clearly the condition C2 6= 0 has to
be satisfied.

On the other hand we observe that the condition ˜K(X,Y ) = 0 implies
α = β = γ = 0 and then Ψ(X,Y ) = 0. Therefore we obtain that the condition
˜K(X,Y ) = 0 is necessary and sufficient for a quadratic system to have the invariant
line at infinity of multiplicity at least 2. This completes the proof of Lemma 7.

4 The quadratic systems belonging to the family QSL3

As it is mentioned in Introduction some of the configurations of the quadratic
systems in the family QSL3 were determined earlier in other papers. More ex-
actly in [16] the configurations Config. 3.1–Config. 3.13 are constructed. In a recent
published article [5] the family of systems possessing two parallel invariant lines is
considered and the configurations Config. 3.14–Config. 3.65 are determined.

In this section we complete the investigation of the family QSL3 and prove that
there exist 16 possible new configurations Config. 3.66–Config. 3.81.

First of all we prove some necessary conditions for a quadratic system to belong
to the family QSL3. We have the following lemma.

Lemma 8. Assume that a non-degenerate quadratic system belongs to the class
QSL3. Then for this system the conditions B1 = 0 and B3 6= 0 have to be fulfilled.

Proof. According to Lemma 1 if for a quadratic system the condition B1 6= 0 holds
then this system could not have any invariant affine line going in some direction. On
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the other hand if a system belongs to the class QSL3 then either there exists at least
one invariant affine line or the line at infinity is triple. However in the second case
there must exist a perturbation such that the perturbed system necessarily possesses
at least one invariant affine line and this means that for this system we must have
B1 = 0. So we deduce that this condition must be satisfied for the non-perturbed
system, too.

Therefore we obtain that for a system in QSL3 the condition B1 = 0 have to
be satisfied. In order to complete the proof of Lemma 8 we have to show that for
a system in QSL3 the condition B3 6= 0 is also necessary. We prove the following
lemma.

Lemma 9. Assume that for a non-degenerate quadratic system the condition B3 = 0
holds. Then this system belongs to the class QSL≥4. Moreover any system in this
class could have a configuration of invariant lines given in Diagram 3 if and only if
the corresponding conditions are satisfied, respectively.

Proof. Assume that for a non-degenerate quadratic system the condition B3 = 0
is fulfilled. In the articles [9] and [11] the families of quadratic systems possessing
invariant line of total multiplicity at least four are investigated and the corresponding
possible configurations of invariant lines are determined.

So considering Tables 2 and 4 from [9] as well as Table 2 from [11] it is not
too difficult to convince ourselves that the conditions given in these tables for the
corresponding configurations are equivalent to the respective conditions presented
in Diagram 3.

We observe that this diagram gives us a complete partition of the whole set
QSL{B3=0}. This completes the proof of Lemma 9 as well as the proof of Lemma 8.

4.1 Configurations of systems belonging to the subfamily

QSL3∩ QS2cIL

In paper [2] (see also [19]) the phase portraits of the family of quadratic sys-
tems possessing two complex invariant lines intersecting at a real finite point are
considered. We denote this family by QS2cIL. A result in [2] determined 20 topo-
logically distinct phase portraits. However the problem of how many configurations
of invariant lines systems in the family QS2cIL could have remains open.

Here we are interested in the configurations of the quadratic systems belonging
to the subfamily QSL3∩ QS2cIL. We prove the following theorem.

Theorem 1. An arbitrary non-degenerate quadratic system belongs to the subfamily
QSL3∩ QS2cIL if and only if the conditions η < 0, B2 = 0 and B3

˜N 6= 0 hold. More-
over this system possesses the configuration Config. 3.66 if µ0 6= 0 and Config. 3.67
if µ0 = 0.
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Diagram 3: The configurations of systems in QSL with B3 = 0

Proof. According to [2, Theorem 1] a non-degenerate quadratic system possesses
two complex invariant lines meeting at a finite real point if and only if one of the
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Diagram 3 (continuation): The configurations of systems in QSL with B3 = 0

following two sets of conditions are satisfied:

(i) η < 0, B2 = 0; (ii) C2 = 0, D > 0.
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Diagram 3 (continuation): The configurations of systems in QSL with B3 = 0

By [15] quadratic systems with C2 = 0 possess in the finite part of the phase
plane invariant lines of total multiplicity three. Therefore we obtain that a system
with C2 = 0 could not belong to the class QSL3. Moreover we deduce that for
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C2 6= 0 the conditions η < 0 and B2 = 0 are necessary and sufficient for a system to
belong to the family QS 2cIL.

Since we are interested in the determinations of the configuration of the quadratic
systems in the subclass QSL3 ∩ QS 2cIL we consider that for a non-degenerate
quadratic system the conditions η < 0 and B2 = 0 are satisfied. Thus according to
what is mentioned above we conclude that in order to complete the proof of Theorem
1 it is sufficient to prove that if for a quadratic system we have η < 0 and B2 = 0
then the condition B3

˜N 6= 0 guarantees that this system belongs to the class QSL3.
Moreover we have also to determine the possible configurations of invariant lines of
these systems.

According to [20] if a quadratic system possesses two complex invariant lines
intersecting at a real finite singular point then via an affine transformation this
system takes the following form:

dx

dt
= (αx− βy)(ax+ by + c) + k(x2 + y2) ≡ P (x, y),

dy

dt
= (βx+ αy)(ax+ by + c) ≡ Q(x, y)

(3)

where α, β, a, b, c, k are arbitrary real parameters. These systems possess the com-
plex invariant lines x± iy = 0 and we calculate

η = −4
[

(k − bβ)2 + a2β2
]2
< 0, B2 = 0, B3 = 3ac2kβ(α2 + β2)(x2 + y2)2.

According to Lemma 8 for a system (3) to belong to the class QSL3 the condition
B3 6= 0 is necessary. The question which appears is the following: which conditions
must be added in order to get the necessary and sufficient ones?

Providing the conditions η < 0 and B3 6= 0 are fulfilled for a system (3) we exam-
ine what additional conditions could increase the total multiplicity of the invariant
lines of this system.

Assume that a system (3) possesses invariant lines of total multiplicity exactly
four. In [11] the family of systems belonging to QSL4 has been investigated and
in Table 2 necessary and sufficient conditions for the realization of each one of the
possible 46 configurations of invariant lines for this class are given. Considering
Table 2 from [11] we detect that systems with the condition η < 0 (i.e. having 2
complex and one real infinite singularities) could possess only one of the following 4
configurations: Config.4.2 and Config.4.6–Config.4.8. However for all these config-
urations the condition B3 = 0 has to be satisfied and hence we get a contradiction
to Lemma 8.

Thus we conclude that a system (3) could not belong to the class QSL4.
Suppose now that a system (3) possesses invariant lines of total multiplicity at

least five. According to [9] (see Theorem 50, statement (ii)) for having invariant
lines of total multiplicity 6 the condition B3 = 0 is necessary for any quadratic
system. So we conclude that a system (3) could not belong to the class QSL6.

It remains to consider the possibility when a system (3) with η 6= 0 (i.e. η < 0)
and B3 6= 0 belongs to the class QSL5. In this case we consider Table 4 from [9] and
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we detect that subject to these conditions we could have the unique configuration
Config.5.6. However to obtain this configuration the condition ˜N = 0 must be
satisfied.

Thus we conclude that a system (3) with η < 0 and B3 6= 0 belongs to the
class QSL3 if ˜N 6= 0 and to the class QSL5 if ˜N = 0. This means that the
conditions provided by Theorem 1 for a quadratic systems to belong to the subclass
QSL3 ∩ QS 2cIL are satisfied.

Next we determine the configurations which a system (3) from the class QSL3

could possess. For this we have to determine the position of the singularities of this
system with respect to the invariant lines.

A straightforward calculation gives us the following finite singularities of systems
(3):

M1(0, 0), M2 =
(

−
cα

k + aα− bβ
,

cβ

k + aα− bβ

)

, M3,4 =
(

−
c

a± ib
,−

c

b∓ ia

)

.

Since the condition B3 6= 0 implies ackβ 6= 0 we conclude that the singular points
M2 and M3,4 could not coalesce with M1. Moreover the singular point M2 exists
if k + aα − bβ 6= 0, otherwise it goes to infinity coalescing with the real infinite
singularity.

On the other hand for systems (3) we calculate

µ0 = (a2 + b2)k(k + aα− bβ)(α2 + β2)

and hence for µ0 6= 0 these systems possess two real and two complex finite singular
points and we arrive at the configuration given by Config.3.66.

Assume now µ0 = 0. Due to the condition B3 6= 0 (i.e. ackβ 6= 0) we get
k = bβ − aα 6= 0 and hence we calculate

µ1 = c(a2 + b2)(aα− bβ)(α2 + β2)(βx+ αy).

We observe that µ1 6= 0 due to the condition ackβ(bβ − aα) 6= 0. Since µ0 = 0,
according to Lemma 3 one finite singular point went to infinity and coalesced with
the infinite real singularity N1[α,−β, 0] (see the factor of the invariant polynomial
µ1(x, y)). In this case we arrive at the configuration given by Config.3.67.

As all the cases are examined we conclude that Theorem 1 is proved.

4.2 Configurations of quadratic systems that are limit points of the

family of Lotka-Volterra systems

It turned out that a quadratic system could have invariant lines of total multiplic-
ity 3 which are not included in one of the following three classes: (i) Lotka-Volterra
systems, or (ii) systems with two parallel invariant lines, or (iii) systems with two
complex lines meeting at a finite singularity.

Indeed such kind of configurations could be obtained from an L-V system using
the following two possibilities:
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(α) Two simple invariant affine lines of an L-V system belonging to the subclass
QSL3 coalesced and we obtain a double invariant affine line and a multiple real
singular point at infinity.

(β) One (or two) simple invariant affine lines of an L-V system in QSL3 coalesced
with infinite line Z = 0 giving a double (or a triple) infinite invariant line.

Since we are in the class of L-V systems by Lemma 1 it is clear that the condition
B2 = 0 must be satisfied in both these cases. Moreover in the case (α) the condition
η = 0 has to be fulfilled, because we have a double (or triple) singular point at
infinity.

On the other hand considering Lemma 7 we conclude that in the case (β) the
condition ˜K(a, x, y) = 0 is necessary.

In what follows assuming the condition B2 = 0 should be fulfilled we examine
each one of the cases we mentioned above and determine the possible configurations
of invariant lines as well as the corresponding affine invariant conditions for their
realization.

(α) In this case for a quadratic system the condition η = 0 has to be satisfied.

We examine two cases: ˜M 6= 0 and ˜M = 0.

Proof. 1. The case ˜M 6= 0. According to Lemma 4 a quadratic system could be
brought via a linear transformation to the canonical form (SIII), i.e. we have to
examine the family systems

ẋ =a+ cx+ dy + gx2 + hxy,

ẏ =b+ ex+ fy + (g − 1)xy + hy2.
(4)

For these systems calculations yield:

θ = 8h2(1 − g), µ0 = gh2, C2 = x2y, ˜N = (g2 − 1)x2 + 2h(g − 1)xy + h2y2. (5)

Since C2 = x2y we conclude that these systems possess two infinite singularities:
N1[1 : 0 : 0] (simple) and N2[0 : 1 : 0] (double). We discuss two subcases: θ 6= 0 and
θ = 0.

1.1. The subcase θ 6= 0. The condition θ 6= 0 yields h(g − 1) 6= 0 and we may
consider d = e = 0 due to a translation. Moreover, since h 6= 0 we may assume
h = 1 due to the rescaling y → y/h. Thus we obtain the family of systems

ẋ = a+ cx+ gx2 + xy, ẏ = b+ fy + (g − 1)xy + y2,

for which we calculate Coefficient[B2, y
4] = −648a2. Hence the necessary condition

B2 = 0 yields a = 0 and then

B2 = −648b(b+ c2 − cf)(g − 1)2x4, H4 = 48(b + c2 − cf), θ = 8(1 − g),

B3 = −3
[

b(g − 1)2x2 − (b+ c2 − cf)y2
]

x2.

We shall consider two possibilities: H4 6= 0 and H4 = 0.
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1.1.1. The possibility H4 6= 0. In this case the condition B2 = 0 yields b = 0
and we arrive at the family of systems

ẋ = x(c+ gx+ y), ẏ = y[f + (g − 1)x+ y],

possessing the invariant lines x = 0 and y = 0. So we obtain LV -systems, i.e. no
new configurations could de detected.

1.1.2. The possibility H4 = 0. Then we have b = c(f − c) and this leads to the
family of systems

ẋ = x(c+ gx+ y), ẏ = c(f − c) + fy + (g − 1)xy + y2, (6)

possessing the invariant line x = 0 which is double because H(X ,Y,Z) = X2 (see
Notation 2). So, these systems possess invariant lines of total multiplicity at least 3.
However for these systems the condition B3 = 3c(c − f)(g − 1)2x4 6= 0 is necessary
and therefore by Lemma 1 we could not have an additional invariant line in the
direction y = 0.

Thus we deduce that in the case B3 6= 0 systems (6) possess invariant lines
of total multiplicity exactly 3. More exactly we have a double invariant affine line
x = 0, on which there are located two finite singularities: M1(0,−c) and M2(0, c−f).
The third finite singularity M3(x3, y3) of systems (6) has the coordinates

x3 = −
cg + c− fg

g
, y3 = (c− f)g.

Since for systems (6) we have µ0 = g we conclude that for µ0 6= 0 all the finite
singularities are on the plane and this means that one of the mentioned finite sin-
gularities is double. We claim that the double singularity is M1(0,−c). Indeed
after translation of the origin of coordinates to the singular point M1 we obtain the
systems

ẋ = x(gx+ y), ẏ = c(1 − g)x + (f − 2c)y + (g − 1)xy + y2 (7)

possessing a double singular point at the origin because the determinant of the linear
part equals zero. So these systems have the finite singular points

M1(0, 0), M2(0, 2c − f), M3

(

− (c+ cg − fg)/g, c + cg − fg
)

and we observe that M3 goes to infinity if g = 0. Moreover it is clear that M2

coalesces with M1 if 2c− f = 0 and M3 coalesces with M1 if c+ cg − fg = 0.
On the other hand for systems (7) calculations yield:

µ0 = g, H3 = 8(2c − f)(c+ cg − fg)x2, H13 = −288c(2c − f)2(g − 1),

B3 = 3c(c − f)(g − 1)2x4

and we observe that due to B3 6= 0 the condition H13 = 0 is equivalent to f = 2c.
So we consider two cases: µ0 6= 0 and µ0 = 0.
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1.1.2.1. The case µ0 6= 0. Then g 6= 0 and the finite singularity M3 remains in
the finite plane. So if H3 6= 0 none of the singular points could coalesced and we
arrive at the configuration Config. 3.68 (see Figure 1)

Assume now H3 = 0, i.e. (2c − f)(c + cg − fg) = 0. Then evidently we obtain
Config. 3.69 if H13 6= 0 and Config. 3.70 if H13 = 0.

We point out that all three finite singularities could not coalesced due to B3 6= 0
(i.e. c 6= 0).

1.1.2.2. The case µ0 = 0. Then g = 0 and systems (7) become

ẋ = xy, ẏ = cx+ (f − 2c)y − xy + y2

possessing the following two finite singularities: M1(0, 0) and M2(0, 2c − f). Since
for the above systems we have µ0 = µ1 = 0 and µ2 = −cy 6= 0 (otherwise we get
degenerate systems), according to Lemma 3 the singular point M3 of systems (7)
has gone to infinity and coalesced with the infinite singular point N1[1 : 0 : 0] which
becomes of multiplicity 2 of the type (1, 1).

On the other hand the finite singularity M2 could coalesce with M1 if the con-
dition f = 2c holds. For the above systems we calculate

B3 = 3c(c− f)x4 6= 0, H3 = 8c(2c − f)x2

and therefore we arrive at the configuration Config. 3.71 if H3 6= 0 and Config. 3.72
if H3 = 0.

1.2. The subcase θ = 0. Considering (5) this condition gives h(g − 1) = 0 and
since µ0 = gh2 we examine two possibilities: µ0 6= 0 and µ0 = 0.

1.2.1. The possibility µ0 6= 0. Then h 6= 0 and hence the condition θ = 0
yields g = 1. Therefore we may consider h = 1 due to the rescaling y → y/h and
d = f = 0 due to a translation. Thus we obtain the family of systems

ẋ = a+ cx+ x2 + xy, ẏ = b+ ex+ y2,

for which we have Coefficient[B2, y
4] = −648a2 and therefore the condition B2 = 0

implies a = 0. Then we calculate

B2 = −648(b+ c2)e2x4, H7 = −4e.

and clearly if e = 0 (i.e. H7 = 0) then the above systems with a = e = 0 possess
three invariant affine lines x = 0 and y2 + b = 0. Therefore we could not obtain new
configurations apart from the ones already known.

Assuming H7 6= 0 we get the conditions b = −c2 and this leads to the family of
systems

ẋ = x(c+ x+ y), ẏ = −c2 + ex+ y2,

possessing the invariant line x = 0 which is double because H(X ,Y,Z) = X2 (see
Notation 2). These systems have three finite singularities M1(0,−c), M2(0, c) and
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M3(−2c − e, c + e). We observe that the singular point M1 is double because after
the translation (x, y) → (x, y + c) we arrive at the systems

ẋ = x(x+ y), ẏ = ex− 2cy + y2, (8)

possessing a double singularity M1(0, 0) at the origin of coordinates (since the de-
terminant of linear part vanishes) and two elemental singularities M2(0, 2c) and
M3(−2c − e, 2c + e). It is clear that in the case e = −2c the singular point M3

coalesces with the double point M1 whereas for c = 0 the singularity M2 coalesces
with M1.

On the other hand for the above systems we calculate

B3 = −3e2x4, H3 = 16c(2c + e)x2, H13 = 2c2e.

and due to B3 6= 0 (i.e. e 6= 0), by Lemma 1 systems (8) could not possess invariant
lines in the direction y = 0. Therefore we deduce that in this case systems (8)
possess invariant lines of total multiplicity 3.

Thus considering the condition H7 6= 0 (i.e. e 6= 0) it is not too difficult to
determine that we get the configuration Config. 3.68 if H3 6= 0, Config. 3.69 if
H3 = 0 and H13 6= 0, and Config. 3.70 if H3 = H13 = 0.

1.2.2. The possibility µ0 = 0. Considering (5) we get h = 0 and therefore for
systems (4) we obtain ˜N = (g2 − 1)x2.

So we discuss two cases: ˜N 6= 0 and ˜N = 0.

1.2.2.1. The case ˜N 6= 0. Then g − 1 6= 0 and assuming e = f = 0 (due to a
translation) we arrive at the systems

ẋ = a+ cx+ dy + gx2, ẏ = b+ (g − 1)xy,

for which we calculate

H7 = 4d(g2 − 1), ˜N = (g2 − 1)x2, Coefficient[B2, y
4] = −648d4g2.

We observe that for d = 0 the above systems possess two parallel invariant lines
a+ cx+ gx2 = 0 and hence no new configurations could be obtained in this case.

Since ˜N 6= 0 we obtain that the condition d = 0 is equivalent to H7 = 0 and in
what follows we assume H7 6= 0. Then the condition B2 = 0 implies g = 0 and then
we obtain

B2 = −648bcdx4, H7 = −4d, µ0 = µ1 = 0, µ2 = −cdxy

and we discuss two subcases: µ2 6= 0 and µ2 = 0.

1.2.2.1.1. The subcase µ2 6= 0. Then we have c 6= 0 and the condition B2 = 0
gives b = 0 and we obtain the family of systems

ẋ = a+ cx+ dy, ẏ = −xy, (9)
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possessing the invariant line y = 0. Moreover for these systems we calculate
H(X ,Y,Z) = Y Z and by Lemma 6 we deduce that the infinite invariant line is
double. In other words we have invariant lines of total multiplicity 3.

Since µ0 = µ1 = 0 and µ2 = −cdxy 6= 0, according to Lemma 3 we deduce that
two finite singular points have gone to infinity and coalesced with infinite singular
points N1[1 : 0 : 0] and N2[0 : 1 : 0], respectively. So at infinity we get two multiple
singularities of multiplicities (1, 1) and (2, 1) (see Remark 1), correspondingly.

On the other hand due to µ2 6= 0 (i.e. cd 6= 0) systems (9) possess two finite
singularities M1(0,−a/d) and M2(−a/c, 0) both simple (i.e. of multiplicity one).
We observe that M2 is located on the invariant line y = 0 and these singularities
coalesce if and only if a = 0.

Since this condition is captured by the invariant polynomial H9 = −576a2c2d2

we arrive at the configuration Config. 3.73 if H9 6= 0 and Config. 3.74 if H9 = 0.
1.2.2.1.2. The subcase µ2 = 0. Since d 6= 0 (due to H7 6= 0) we obtain c = 0 and

this leads to the systems

ẋ = a+ dy, ẏ = b− xy,

for which we have

B2 = 0, B3 = −3bx4, H7 = −4d 6= 0, µ0 = µ1 = µ2 = 0, µ3 = adxy2.

For these systems we calculate H(X ,Y,Z) = Z2 and by Lemma 6 we deduce that
the infinite invariant line is triple, i.e. we have invariant lines of total multiplicity 3.
It is clear that we remain in this class due to the condition B3 6= 0.

It µ3 = adxy2 6= 0 then by Lemma 3 we deduce that two finite singular points
have gone to infinity and coalesced with the infinite singularityN1[1 : 0 : 0] producing
a triple point of the multiplicity (1, 2). At the same time one finite singularity has
coalesced with N2[0 : 1 : 0] and we obtain a triple infinite singularity of multiplicity
(2, 1). As a result we obtain the configuration Config. 3.75.

Assume now µ3 = 0. Then due to H7 6= 0 (i.e. d 6= 0) we get a = 0 and hence
we arrive at the systems

ẋ = dy, ẏ = b− xy,

for which we have

B2 = 0, B3 = −3bx4 6= 0, H7 = −4d 6= 0, µ0 = µ1 = µ2 = µ3 = 0, µ4 = −bd2xy3.

We observe that µ4 = −bd2x 6= 0 (due to B3H7 6= 0) and therefore according to
Lemma 3 in the same manner as it was described above these systems possess at
infinity the singularities N1[1 : 0 : 0] and N2[0 : 1 : 0] of multiplicities (2, 1) and
(1, 3), respectively. In this case we obtain the configuration Config. 3.76.

1.2.2.2. The case ˜N = 0. In this case g2 − 1 6= 0 and since for systems (4) with
h = 0 we have ˜K = 2g(g − 1)x2 we consider two subcases: ˜K 6= 0 and ˜K = 0.

1.2.2.2.1. The subcase ˜K 6= 0. Then g 6= 1 and the condition ˜N = 0 gives g = −1.
Then we may assume in systems (4) e = f = 0 and we arrive at the systems

ẋ = a+ cx+ dy − x2, ẏ = b− 2xy,
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for which we have Coefficient[B2(a, x, y), y
4] = −648d4y4 and hence the condition

B2 = 0 implies d = 0. However in this case we obtain two parallel invariant lines
a+ cx− x2 = 0 and this class of systems is already investigated in [5].

1.2.2.2.2. The subcase ˜K = 0. Then the condition ˜N = 0 gives g = 1 and we
may assume c = 0 in systems (4) with h = 0 and g = 1. This leads to the family of
systems

ẋ = a+ dy + x2, ẏ = b+ ex+ fy,

for which we have B2 = −648d4y4. Therefore the condition B2 = 0 yields d = 0
giving two invariant affine lines x2 + a = 0. So we get two parallel invariant lines
and we conclude that in this case we also could not have new configurations.

2. The case ˜M = 0. According to Lemma 4 a quadratic system in this class
could be brought via a linear transformation to the canonical form (SIV ), i.e. we
have to examine the family of systems

ẋ =a+ cx+ dy + gx2 + hxy,

ẏ =b+ ex+ fy − x2 + gxy + hy2,
(10)

for which calculations yield:

θ = 8h3, µ0 = −h3, C2 = x3.

Since C2 = x3 we conclude that these systems possess only one infinite singularity
N1[0 : 1 : 0] which is triple. We discuss two subcases: θ 6= 0 and θ = 0.

2.1. The subcase θ 6= 0. Then h 6= 0 and we may assume c = d = 0 due to a
translation. So we obtain the systems

ẋ =a+ gx2 + hxy,

ẏ =b+ ex+ fy − x2 + gxy + hy2,

for which we calculate Coefficient[B2, y
4] = −3888a2h4x2y2 and therefore the condi-

tion B2 = 0 implies a = 0 due to h 6= 0. In this case we obtain B2 = −648b2h4x4 = 0
which implies b = 0 and we get the systems

ẋ =x(gx+ hy), ẏ = ex+ fy − x2 + gxy + hy2. (11)

For these systems following Notation 2 we calculate H(X ,Y,Z) = X2, i.e. by
Lemma 6 the invariant line x = 0 of systems (11) has the multiplicity 2.

On the other hand due to θ 6= 0 (i.e. h 6= 0) the above systems possess the
following three finite singularities:

M1(0, 0), M2(0,−f/h), M3((eh − fg)/h, g(fg − eh)/h2).

It is clear that M1 is double because the first equation of systems (11) does not have
linear terms (nor constant one).

For systems (11) we have B2 = 0 and by Lemma 8 in order to remain in the
class QSL3 the condition B3 = −3f(fg − eh)x4 6= 0 is necessary.
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Then considering the information pointed out above about the multiplicity of
finite and infinite singularities of systems (11) we arrive at the configuration Config.
3.77.

2.2. The subcase θ = 0. This condition gives h = 0 and then for systems (10)
we have

Coefficient[B2, x
2y2] = −3888d4g2, ˜N = g2x2.

We observe that in the case ˜N 6= 0 (i.e. g 6= 0) the condition B2 = 0 implies d = 0
and then systems (10) possess two parallel invariant lines gx2+cx+a = 0. Since this
family of systems was already investigated we have to impose the condition ˜N = 0
which yields g = 0. However in this case we get B2 = −648d4x4 = 0, i.e. d = 0 and
again we conclude that no new configurations could be obtained in this case.

Thus in the case ˜M = 0 and B2 = 0 we have exactly one new configuration
Config. 3.77 and for this it is necessary θ 6= 0.

(β) It was mentioned earlier (see page 66) that in this case for a quadratic
system apart from the condition B2 = 0 the condition ˜K = 0 has to be satisfied.
According to Lemma 7 the infinite invariant line is of multiplicity at least two. This
case contains two possibilities: either Z = 0 is double and we have an additional
invariant affine line or Z = 0 is triple. Clearly in both cases we are in the class
QSL3.

In the previous case (α) when η = 0 we have examined all the possibilities when
the invariant line Z = 0 is either simple or double or triple. So we have to investigate
the cases η < 0 and η > 0 when in addition we have the multiple invariant line at
infinity.

1. The case η < 0. We prove the following lemma.

Lemma 10. If for a quadratic system the conditions η < 0 and B2 = ˜K(a, x, y) = 0
hold, then this system possesses invariant lines of total multiplicity at least 4.

Proof. Assume that for a quadratic system the condition η < 0 holds. Then ac-
cording to Lemma 4 a quadratic system in this class could be brought via a linear
transformation to the canonical form (SII), i.e. we have to examine the family of
systems

ẋ =a+ cx+ dy + gx2 + (h+ 1)xy,

ẏ =b+ ex+ fy − x2 + gxy + hy2,

for which calculations yield:

C2 = x(x2 + y2), ˜K = 2(1 + g2 + h)x2 + 4ghxy + 2h(1 + h)y2.

Evidently the condition ˜K = 0 is equivalent to g = 0 and h = −1 and therefore
applying an additional translation which gives e = f = 0 we get the family of
systems

ẋ =a+ cx+ dy, ẏ = b− x2 − y2.
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For these systems we have

B2 = −648
[

16a2 + (c2 + d2 − 4b)2
]

x4 = 0 ⇒ a = 0, b = (c2 + d2)/4

and we arrive at the systems

ẋ =cx+ dy, ẏ = (c2 + d2)/4 − x2 − y2

which possess the double invariant line Z = 0 and two complex invariant affine lines

(c± id∓ 2ix+ 2y) = 0.

So the above systems have invariant lines of total multiplicity at least four and this
completes the proof of Lemma 10.

2. The case η > 0. By Lemma 4 a quadratic system in this class could be
brought via a linear transformation to the canonical form (SI), i.e. we have to
examine the family of systems

ẋ =a+ cx+ dy + gx2 + (h− 1)xy,

ẏ =b+ ex+ fy + (g − 1)xy + hy2,
(12)

for which we calculate:

C2 = xy(x− y), ˜K = 2g(g − 1)x2 + 4ghxy + 2h(h− 1)y2.

Therefore the condition ˜K = 0 implies gh = g(g − 1) = h(h− 1) = 0. Evidently we
can assume g = 0, otherwise we apply the change

(x, y, a, b, c, d, e, f, g, h) 7→ (y, x, b, a, f, e, d, c, h, g) (13)

which conserves systems (12). In this case we have either g = h = 0 or g = 0
and h = 1. We claim that the second case can be reduced to the first one via a
transformation. Indeed assuming g = h = 0 we get the family of systems

ẋ =a+ cx+ dy − xy, ẏ = b+ ex+ fy − xy, (14)

whereas for g = 0 in the case h = 1 we arrive at the systems

ẋ =a+ cx+ dy, ẏ = b+ ex+ fy − xy + y2. (15)

Then applying the linear transformation x1 = y, y1 = y − x to systems (15) we
arrive at the family of systems

ẋ1 = a′ + c′x1 + d′y1 − x1y1, ẏ1 = b′ + e′x1 + f ′y1 − x1y1

where

a′ = b, c′ = e+ f, d′ = −e, b′ = b− a, e′ = e+ f − c− d, f ′ = c− e.
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Comparing the above system with (14) we deduce that our claim is proved.
Thus g = h = 0 and for systems (14) we calculate

B2 = −648(a + cd)(b+ ef)(x− y)4 = 0.

Due to the change (13) we may assume b = −ef . Then we arrive at the systems

ẋ =a+ cx+ dy − xy, ẏ = (f − x)(y − e), (16)

which besides the double infinite invariant line Z = 0 possess the invariant affine
line y = e. We point out that for these systems we have

B3 = 3(a + cd)(x − y)2y2, H7 = −4(c+ d− e− f)

and by Lemma 8 the condition B3 6= 0 has to be satisfied. We claim that in order to
be in the class QSL3 we must force also the condition H7 6= 0 to be fulfilled. Indeed
supposing H7 = 0 we obtain f = c+ d− e and we arrive at the family of systems

ẋ = a+ cx+ dy − xy, ẏ = (c+ d− e− x)(y − e)

possessing the following two invariant affine lines:

y = e, a+ ce+ de− e2 + (c− e)(x− y) = 0,

i.e. the above systems belong to the class QSL≥4 and this completes the proof of
our claim.

Next we examine configurations of invariant lines for the family of systems (16)
in the case B3H7 6= 0. We determine that these systems possess the singular points
Mi(xi, yi) with the coordinates:

x1 = f, y1 = −
a+ cf

d− f
; x2 = −

a+ de

c− e
, y2 = e

and evidently these finite singularities exist if and only if (c−e)(d−f) 6= 0. Moreover
the singularity M2 is located on the invariant line y = e of systems (16).

On the other hand for systems (16) we calculate

µ0 = µ1 = 0, µ2 = −(c−e)(d−f)xy, H9 = −576(c−e)2(d−f)2(a+de+cf −ef)2

and hence if µ2 6= 0 we have two finite singularities M1 and M2, where M2 is located
on the invariant line y = e. Moreover we observe that in the case a+de+cf−ef = 0
the singular point M1 coalesced with M2 giving the double singularity M1,2(f, e) on
the invariant line y = e. We examine two possibilities: µ2 6= 0 and µ2 = 0.

2.1. The possibility µ2 6= 0. In this case the condition H9 = 0 is equivalent to
a + de + cf − ef = 0. Then taking into account the factorization of the invariant
polynomial µ2(x, y) by Lemma 3 we obtain that at infinity both the singular points
N1[1 : 0 : 0] and N2[0 : 1 : 0] are double of the type (1, 1). Therefore we arrive at
the configuration Config. 3.78 if H9 6= 0 and at Config. 3.79 if H9 = 0.
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2.2. The possibility µ2 = 0. This condition implies (c − e)(d − f) = 0 and since
we have

µ3 = −(c− e)(a− de+ cf + ef)x2y + (d− f)(a+ de− cf + ef)xy2

by Lemma 3 we deduce that for d = f the finite singularity M1 coalesced with
infinite singular point N1[1 : 0 : 0] which becomes of the multiplicity (1, 2). This
leads to the configuration Config. 3.80.

In the case c = e the finite singularity M2 coalesced with infinite singular point
N1[0 : 1 : 0] located at the ”end” of the invariant affine line y = e and we get the
configuration Config. 3.81.

On the other hand for systems (16) we have

H17 = 9(a+ cd)(c− e)2

and therefore in the case µ2 = 0 (i.e. (c − e)(d − f) = 0) we get d = f if H17 6= 0
(Config. 3.80 ) and we obtain c = e if H17 = 0 (Config. 3.81 ).

We point out that we could not have simultaneously d = f and c = e because
in this case we get H7 = −4(c+ d− e− f) = 0 and this contradicts our assumption
H7 6= 0.

On the other hand in the case d = f we obtain

µ3 = (e− c)(a+ cf)x2y, B3 = 3(a+ cf)(x− y)2y2, H7 = 4(e − c)

whereas for c = e we have

µ3 = (d− f)(a+ de)xy2, B3 = 3(a+ de)(x− y)2y2, H7 = −4(d− f).

We observe that in both cases the condition B3H7 6= 0 implies µ3 6= 0 and therefore
we could not have other new configurations in the case under consideration.
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No. 1 (56) (2008), 27–83.

[14] D. Schlomiuk and N. Vulpe. Integrals and phase portraits of planar quadratic differential

systems with invariant lines of at least five total multiplicity. Rocky Mountain J. Math., 38,
no. 6 (2008), 2015–2075.

[15] D. Schlomiuk and N. Vulpe. The full study of planar quadratic differential systems pos-

sessing a line of singularities at infinity. J. Dynam. Differential Equations, 20, no. 4 (2008),
737–775.

[16] D. Schlomiuk and N. Vulpe. Global classification of the planar Lotka–Volterra differential

systems according to their configurations of invariant straight lines. J. Fixed Point Theory
Appl., 8, no. 1 (2010), 177–245.

[17] D. Schlomiuk and N. Vulpe. Global topological classification of Lotka–Volterra quadratic

differential systems. Electron. J. Differential Equations, 2012 (2012), No. 64, 69 pp.

[18] K. S. Sibirskii. Introduction to the algebraic theory of invariants of differential equations.
Translated from Russian. Nonlinear Science: Theory and Applications. Manchester University
Press, Manchester, 1988.



[19] D. Schlomiuk and X. Zhang. Quadratic differential systems with complex conjugate invariant

lines meeting at a finite point. J. Differential Equations 265 (2018), no. 8, 3650–3684.

[20] Guangjian Suo and Yongshau Chen. The real quadratic system with two conjugate imagi-

nary straight line solutions. Ann. Diff. Eqns. 2 (1986), 197–207.

Cristina Bujac

Institute of Mathematics and Computer Science,
State University of Moldova
E-mail: cristina@bujac.eu

Dana Schlomiuk
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Abstract. We present several results on the determination of the number and
distribution of limit cycles or centers for planar systems of differential equations. In
most cases, the study of a recurrence is one of the key points of our approach. These
results include the counting of the number of configurations of stabilities of nested
limit cycles, the study of the number of different configurations of a given number of
limit cycles, the proof of some quadratic lower bounds for Hilbert numbers and some
questions about the number of centers for planar polynomial vector fields.
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1 Introduction

In the qualitative study of differential systems in the plane, there are several
questions about topological configurations that naturally lead to enumeration and
combinatorial problems which, sometimes, can be approached by using recurrences.

This paper is devoted to study such type of questions for smooth planar differ-
ential systems,

ẋ = P (x, y), ẏ = Q(x, y). (1)

In some parts of the work, the functions P and Q defining these differential equations
will also be assumed to be polynomials.

After giving some definitions in Section 2, in Section 3 we will consider the growth
of the number of stability configurations of n nested limit cycles of (1) in terms of
their stability. We will show that this number of configurations can be explicitly
determined using expressions involving the Fibonacci numbers, F0 = F1 = 1 and
Fn+2 = Fn+1 + Fn. Although it may not be necessary to highlight the importance
and ubiquity of the Fibonacci sequence both in arithmetic and geometry problems,
and in some applied questions, we point out a couple of examples: their use in
graph theory ([33]) and their earliest appearance in Indian mathematics to count
the number of sums of 1 and 2 (taking into account the order of the addends) that
add up to n. For instance, if n = 4, there appear Fn+1 = F4+1 = 5 possibilities:

1 + 1 + 1 + 1, 2 + 1 + 1, 1 + 2 + 1, 1 + 1 + 2, 2 + 2.
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Our second result deals with planar systems having exactly n limit cycles. In
Section 4 we study the number of different configurations that these limit cycles can
exhibit regarding only its topological distribution. In Figure 1, we show a colored
illustration of the 20 different configurations of 5 limit cycles.

Figure 1. The 20 configurations in the case n = 5. The colors have a purely aesthetic
function and mean nothing to the dynamics.

In our classification we do not take into account dynamical considerations such
as the classification of the corresponding phase portraits. Notice that this point
of view is totally different of that of Section 3 where the stability of the different
periodic orbits is the key point to distinguish the different stability configurations.
This problem can be seen as the pure geometrical problem of counting the number of
ways of arranging n non-overlapping circles, which are in bijection with the different
cases of unlabeled rooted trees with n + 1 nodes, [37]. The problem of finding this
last number was studied by A. Cayley in his 1875’s paper, [7], where a recurrence
relation to compute this number is presented (see also [5, p. 43] or [15, p. 71]).
In Proposition 3, we will give another recurrent expression. Our approach is self-
contained and, to our knowledge, novel in the context of the study of limit cycles.

These two sections have no relation with existing literature where the number of
possible phase portraits of some families of planar polynomial differential equations,
modulo topological conjugacy (see for instance [3]) or modulo the existence of limit
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cycles (see for instance [14]), is studied in detail.

Section 5 deals with Hilbert numbers for polynomial systems. Recall that when
P and Q are arbitrary polynomials of degree at most n, the Hilbert number H(n)
is the maximum number of limit cycles that these differential equations (1) can
have, or infinity if there is no upper bound for the number of limit cycles. It is
well-known that H(0) = H(1) = 0 and H(2) ≥ 4, but even for n = 2 it is not
known whether H(2) is finite. Following [17], we present a very simple proof that
the Hilbert numbers increase at least quadratically with n; the proof is based on
the ideas of [9] and uses a very basic background on ordinary differential equations
(ODEs) and recurrences.

Finally, in Section 6 we collect several known results about the maximum number
of centers of planar polynomials systems of degree n, see also [16]. Special attention
is paid to Hamiltonian and holomorphic centers, following [2, 10,11,35].

2 Some definitions

In the theory of planar differential systems, a limit cycle is a periodic orbit such
that at least there is another trajectory that either spirals into it or from it as time
approaches infinity. In this paper we will deal with analytic systems, hence a limit
cycle is an isolated periodic orbit. Notice that even for C∞-systems limit cycles can
be non-isolated periodic orbits.

Consider an analytic planar differential system. Let γ be a limit cycle of this
differential system. We will say that it is stable, and denote it as γs, if it is locally
asymptotically stable. We say that it is unstable, and denote it by γu, if either it is a
repelle or semistable (in this last case, either the nearby external paths converge to
it and the nearby internal ones diverge from it, or the reciprocal situation is given).

We introduce some more preliminary definitions. Let c be a closed curve em-
bedded in R2. A configuration of cycles is a finite set C = {c1, ..., cn} of disjoint
simple closed curves. Following [29, 31] we say that two configurations of cycles
C and C′ are equivalent if there exists a homeomorphism φ : R2 → R2 such that
φ(C) = C′. Clearly the different configurations are characterized by the topology of
the set R2 \ C. It is also known that any configuration of cycles is homeomorphic to
a set of disjoint circles, see again [29].

When the closed curves defining a configuration correspond to the limit cycles
of a differential equation (1) we will say that it is a limit cycles configuration. If the
stability of the limit cycles is also taken into account we will say that it is a limit
cycles stability configuration.

If γ is a limit cycle, we will denote by Cγ the bounded open set with boundary γ.
Consider now a differential equation (1) with finitely many periodic orbits (so, all
them are limit cycles). We can introduce a natural partial order in the set P formed
by the union of all limit cycles by defining γ′ ≺ γ whenever γ′ ⊂ Cγ given γ′, γ ∈ P.
With this order, (P,≺) is a partially ordered set (poset) and the following concepts
can be introduced:
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P1 P2

Figure 2. Two different nests of limit cycles. One of level 2, surrounding the singular
point P2, and another one, included in the shaded region, of level 3 surrounding the
two singular points (and eventually others located in the white region). The level of
the maximal limit cycle is 5.

� A maximal element γ of the poset (P,≺) will be called maximal limit cycle.
In this case, Cγ will be called the domain of γ and the number of cycles γ′

such that γ′ ⊂ Cγ , the level of γ.

� We say that a subset N ⊆ P is a nest if all periodic orbits γ ∈ N are such that
all the corresponding Cγ sets contain the same singular points and moreover
it is the biggest set in P with this property. The level of the nest N is its
number of elements.

In Figure 2, we show a configuration of limit cycles forming two nests.

We also will use a common function in number theory, see [32]. The partition
function p : N −→ N assigns to each natural number n the number of combinations
of positive natural numbers that add up to n. We define p(0) = 1.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14

p(n) 1 2 3 5 7 11 15 22 30 42 56 77 101 135

Table 1. Some values of the partition function p(n).

The partition function grows very fast with n; for example p(50) = 204 226,
p(100) = 190 569 292, p(1000) ≈ 2.4 × 1031, p(10000) ≈ 3.6 × 10106, . . . In fact,
Hardy and Ramanujan, and, independently, Uspensky proved that

p(n) ∼ 1

4n
√
3
exp

(√
π
2n

3

)
as n ∼ ∞.
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In Niven and Zuckerman’s book [32] some recurring expressions for the calculation
of p(n) are shown. We highlight, for instance,

p(n) =
∑

j∈Z\{0}

(−1)j+1p
(
n− 1

2
(3j2 − j)

)

= p(n− 1) + p(n− 2)− p(n− 5)− p(n− 7) + p(n− 12) + · · · ,

where p(k) is taken to be zero when it is evaluated at negative values.

Finally, we also will use combinations with repetition. A combination with repe-
tition of k objects taken from a set with n elements is a way of selecting an object in
the set, k times in succession, without taking into account the order of the k choices
and “with replacement”, so the same object can be selected several times. It is well
known that there are

(
n+k−1

k

)
combinations with repetition, where

(
m
q

)
is the usual

combinatorial number.

3 Fibonacci numbers and limit cycles

In this section we will show how Fibonacci numbers appear when counting the
limit cycles stability configurations. Note that since the repelling limit cycles and the
semistable ones are both considered unstable, we will not be counting the number
of phase portraits when studying the stability configurations.

It is well known (in fact, it is an exercise that appears in some textbooks) that
the number of stability configurations of nested limit cycles satisfies the Fibonacci
sequence.

Lemma 1. Let cn denote the number of stability configurations of a nest of n limit
cycles for an analytic planar system (1). Then

cn = cn−1 + cn−2, with c0 = 1 and c1 = 2. (2)

Hence, cn = Fn+2, being Fi the i-th Fibonacci number.

Proof. Suppose that we have n nested limit cycles {γ1, . . . , γn} forming a nest
N ⊆ Cγn with level n. We consider that γ1 ≺ γ2 ≺ · · · ≺ γn. These limit cycles can

be stable or unstable. We write any stability configuration as γk11 ≺ γk22 ≺ · · · ≺ γknn
where ki ∈ {s, u} (below, we also use this notation to indicate the ordering of partial
configurations of 2 or 3 cycles).

Observe that if γn is unstable then γn−1 can be either stable or unstable, so the
following two partial configurations are possible

γun−1 ≺ γun and γsn−1 ≺ γun.

As a consequence there are as many stability configurations with γun as stability
configurations of n− 1 limit cycles.
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On the contrary, if γn is stable then γn−1 can only be unstable, hence we only
have the partial stability configuration γun−1 ≺ γsn. By using the preceding argument
we have that the only possible configurations are

γun−2 ≺ γun−1 ≺ γsn and γsn−2 ≺ γun−1 ≺ γsn,

so there are as many configurations with γsn as configurations of n− 2 limit cycles,
which proves the relation (2). The initial conditions are also clear: there is only one
way to have no limit cycles, so c0 = 1, and, if a unique limit cycle exists, then it can
be either stable or unstable and so c1 = 2.

We consider now the number of possible stability configurations of two nests of
limit cycles each of them surrounding only one of the two singular points P1 and P2

with index +1 (recall that any limit cycle of a smooth system surrounds at least one
singular point). In this case, there can be a nest with i limit cycles surrounding P1

and another one with j limit cycles surrounding P2. We denote this class of stability
configurations by (i, j). Observe that if there are only two singular points with
index +1, there cannot exist a nest enveloping both points because, otherwise, there
would exist an invariant disk containing only the two fixed points so that the sum
of indices would be 2, which would contradict the Poincaré-Hopf theorem, see [13].

Because of the definition of configuration, we identify, and only count as one,
the symmetric configurations in the (i, j) and the (j, i) classes, and we will write
(i, j) ∼ (j, i). More explicitly, consider a case in the class (i, j) such that the
stability configuration of the nest surrounding P1 is γk11 ≺ γk22 ≺ · · · ≺ γkii and

the stability configuration of the nest surrounding P2 is γ̄
ℓ1
1 ≺ γ̄ℓ22 ≺ · · · ≺ γ̄

ℓj
j , where

km, ℓm ∈ {s, u}. For reasons of economy, we will write this configuration as

(k1, k2, . . . , ki; ℓ1, ℓ2, . . . , ℓj). (3)

We will only count as one case the symmetric configurations (3) and

(ℓ1, ℓ2, . . . , ℓj ; k1, k2, . . . , ki),

which belong to the classes (i, j) and (j, i) respectively.

By using (2) we get the following result:

Proposition 1. The number of stability configurations of n limit cycles surrounding
only two singular points of index +1 for an analytic planar system (1) is

c∗n,2 =

⌊n−1
2

⌋∑

i=0

Fi+2Fn−i+2 + δ(n)

(
F⌊n/2⌋+2 + 1

2

)
, (4)

where δ(n) = (1 + (−1)n)/2 and ⌊ ⌋ is the floor function.

In Table 2, we present some of the values of c∗n,2:
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n 1 2 3 4 5 6 7 8 9 10 11 12

c∗n,2 2 6 11 24 44 86 155 287 510 916 1608 2833

Table 2. Some values of the number of stability configurations of limit cycles sur-
rounding only two points of index +1.

Proof of Proposition 1. It is easy to see that, by Lemma 1, the number of configu-
rations in the classes of the form (i, n− i) with i ̸= n− i, taking into account that
(i, n− i) ∼ (n− i, i), is

⌊n−1
2

⌋∑

i=0

cicn−i =

⌊n−1
2

⌋∑

i=0

Fi+2Fn−i+2.

If n is odd, there are no other cases and Equation (4) holds.
If n is even, we must add the configurations that belong to the class (n/2, n/2).

In this case, it is easy to see that if we did not take into account the identification
of symmetric cases we would have c2n/2 configurations. But, taking into account the
equivalence relation of symmetric cases, and by Lemma 1, we have only

(
cn/2 + 1

2

)
=

(
F⌊n/2⌋+2 + 1

2

)

configurations, which is precisely the number of combinations with repetition of cn/2
elements taken in groups of 2 elements.

Notice that, even though the term F⌊n/2⌋+2 in the formula (4) makes sense for n
odd, it does not apply in this case because δ(n) = 0.

Now we consider the case in which, apart from the nests surrounding P1 and P2

with levels i and j, there is a third (outer) nest consisting of k cycles surrounding
both P1 and P2. In this case we say that the system is of class (i, j; k). For instance,
the class of the configuration shown in Figure 2 is (0, 2; 3). Again we must identify
the symmetric cases in the classes (i, j; k) and (j, i; k). Observe that, from the
Poincaré-Hopf Theorem, if k > 0 there must be other singular points enveloped by
the limit cycles of the outer nest. Moreover, if there are finitely many singular points
inside the outer nest, the total sum of their indices must be +1 or, equivalently, the
sum of the indices out of the nests P1 and P2 must be −1.

Proposition 2. The number of stability configurations of n limit cycles, with con-
figuration (i, j; k) such that i+ j + k = n, is

cn,2 =
n∑

k=0




⌊ k−1
2

⌋∑

i=0

Fi+2Fk−i+2 + δ(k)

(
F⌊k/2⌋+2 + 1

2

)
Fn−k+2.
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n 1 2 3 4 5 6 7 8 9 10 11

cn,2 4 13 34 82 184 396 821 1659 3277 6362 12163

Table 3. Some values of the number of stability configurations of limit cycles sur-
rounding only two singular points of index +1 and some other singular points with
total sum of their indices equal to −1.

Some of the values of cn,2 are given in Table 3.

Proof of Proposition 2. If we have n limit cycles, we must study the stability con-
figurations of all the classes of the form (i, k − i;n − k) for each k = 0, . . . , n and
i = 0, . . . , k, taking into account that (i, k − i;n− k) ∼ (k − i, i;n− k).

By Proposition 1, for each k ∈ {0, . . . , n}, the contribution of the nests that
surround P1 and P2 to the number of stability configurations is c∗k,2. On the other
hand, by using Lemma 1, the contribution of the outer nest is cn−k = Fn−k+2.
Therefore the number of configurations for each k is c∗k,2cn−k. Adding all the cases
we get

cn,2 =

n∑

k=0

c∗k,2cn−k,

so the result follows.

Obviously, the stability configurations in other nest arrangements can be treated
analogously.

4 Number of configurations of ODEs with n limit cycles

In contrast with Section 3, where the stability of the limit cycles plays a key
role, in this section we study the maximum number of configurations of limit cycles
regarding only its topological distribution. We consider a planar system with exactly
n limit cycles. As mentioned in the introduction, the different configurations are in
bijection with the different cases of unlabeled rooted trees with n + 1 nodes which
were studied by Cayley in 1875. Our approach is independent of those we have
found in the literature and self-contained. The results that we present are extracted
from [21].

We will use some of the notations introduced in Section 2. In particular, recall
that if γ is a periodic orbit of our planar system, Cγ denotes the bounded open set
with boundary γ. If γ is maximal, Cγ is the domain of γ and the number of limit
cycles in Cγ is the level of γ.

We will first address a simple question such as the number of maximal limit
cycles configurations (see thicker cycles in Figures 3 and 4). We can state our first
result in terms of the partition function introduced in Section 2.
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Lemma 2. Consider a system of differential equations in the plane with exactly n
limit cycles. Then, the maximal limit cycles of this system can be distributed in p(n)
different ways.

Proof. The level of every maximal cycle γ is a positive integer given by the number
of limit cycles contained in Cγ . Since the domains of the maximal limit cycles are
disjoint, the total number of ways to arrange them in order to have exactly n limit
cycles coincides with the number of ways to get the sum of their levels to be n, i.e.
p(n).

1 + 1 + 1 + 1 + 1 1 + 1 + 1 + 2
1 + 2 + 2 1 + 1 + 3 (*)

1 + 4 (*)
2 + 3 (*) 5 (*)

Figure 3. The p(5) = 7 different distributions of maximal limit cycles for n = 5.
Thicker limit cycles are the maximal ones. Maximal limit cycle configurations with
(*) give rise to different limit cycle configurations, see Figure 4.

A configuration of maximal limit cycles with αj domains of level qj , j = 1, . . . , s
and qk ̸= ql if k ̸= l, will be denoted by (qα1

1 , qα2
2 , . . . , qαs

s ). Obviously, for a differ-
ential system with the above configuration and exactly n limit cycles it holds that
n = α1q1 + · · ·+ αsqs. Notice that, given n there are p(n) different ways of writing
n as

n = α1,kq1,k + · · ·+ αsk,kqsk,k, k = 1, 2, . . . , p(n),

with qu,v ≥ 1 and αu,v ≥ 1 integer numbers.

Proposition 3. Consider a system of differential equations in the plane with exactly
n limit cycles. Then the maximum number of configurations of limit cycles is given
by the recurrent formula

C(n) =

p(n)∑

k=1

sk∏

i=1

(
C(qi,k − 1) + αi,k − 1

αi,k

)
, (5)

with C(0) = 1 for the sake of notation, and n =
∑sk

i=1 αi,kqi,k for each
k = 1, 2, . . . , p(n).

The first values of C(n) are given in Table 4. For instance, in Table 4, the value
C(5) = 20 is obtained by using Proposition 3, by adding the 3 configurations in
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Figure 3 without the (*) symbol with the 17 ones given in Figure 4. The whole list
of cases is depicted in Figure 1.

n 1 2 3 4 5 6 7 8 9 10

C(n) 1 2 4 9 20 48 115 286 719 1842

Table 4. First values of C(n), the number of different configurations of n limit cycles.

Note that, as a consequence of the fact that the sequence C(n) also counts the
number of unlabeled rooted trees with n + 1 nodes, it is a shifted version of the
sequence A000081 in OEIS, [38]. This sequence has been widely studied in connec-
tion with other problems (see the comments and references in the above citation).
Among the results in the literature, we highlight that the asymptotic expression
of this sequence and other properties of its generating function have been studied
among others by Pólya in 1937 (see this and other references in [15, p. 72] and [19]).

1 + 1 + 3 [2 config.] 2 + 3 [2 config.]

1 + 4 [4 config.]

5 [9 config.]

Figure 4. Unfolding of configurations in the case n = 5 that have an (∗) in Figure 3.

Proof of Proposition 3. We will use the notations and results stated in Lemma 2.
Let (qα1

1 , qα2
2 , . . . , qαs

s ) be a partition of n. Since the formula of C(n) is recurrent, it
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suffices to see how to calculate C(n) knowing C(j), j = 1, . . . , n− 1.
We take a domain with level q. Let γ be its maximal limit cycle. In Cγ there

will be exactly q− 1 limit cycles and hence each domain of level q supports C(q− 1)
different configurations.

To obtain the total number, we will study how many of them are produced when
considering different domains simultaneously. We will distinguish two cases:

(a) Domains have different levels qA and qB. In this case, considering them simul-
taneously we will obtain C(qA − 1)C(qB − 1) configurations.

(b) There are α domains of level q. In this case, similarly to Section 3, the total
number of configurations cannot be computed simply as (C(q− 1))α, since we
would count many repetitions. For instance, if we had α = 2 nests of level
q = 4, see Figure 5, then C(q−1) = C(3) = 4. Counting all the possible pairs,
we would obtain the (C(3))2 = 16 configurations {AA,AB,AC,AD, . . . ,DD}
while 6 of them are repeated. The correct number of configurations turns out
to be

(
4+1
2

)
=
(
5
2

)
= 10.

In general, this is a purely combinatorial problem and the number of config-
urations obtained by joining α domains of level q corresponds to the number
of combinations with repetition of C(q − 1) elements taken in groups of α
elements: (

C(q − 1) + α− 1

α

)
.

A B C D

Figure 5. Possible configurations of a domain of level 4 (q = 4).

Cases (a) and (b) give us a complete final description: for each partition
(qα1

1 , qα2
2 , . . . , qαs

s ), the number of configurations will be given by

s∏

i=1

(
C(qi − 1) + αi − 1

αi

)
;

if we now add all the partitions of n, we arrive to the formula of the statement.

To end this section we want to make a couple of remarks: (i) any configuration of
limit cycles can be realized by a polynomial vector field (with a computable degree),
see [29,31]. In [29] the n limit cycles are hyperbolic while in [31] the limit cycles can
also be chosen with any given desired stability and multiplicity; (ii) the extended
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Bendixson–Dulac Theorem ([8, 18, 30, 41]) gives, under some conditions, an upper
bound of the number of limit cycles of a smooth planar differential system (1) and
sometimes even the exact number, allowing to ensure that we are under our main
hypothesis: the system (1) has exactly a given number of limit cycles.

5 Lower bounds for Hilbert numbers

Consider now real planar polynomial systems of ordinary differential equations
(1) with P and Q polynomials of degree at most n. We are concerned about the
maximum number of limit cycles, H(n). The knowledge of H(n) is one of the most
elusive problems of the famous Hilbert’s list and constitutes the second part of
Hilbert’s sixteenth problem.

As we have already explained, here we prove the existence of quadratic lower
bounds for H(n) that are obtained following the ideas of [9] and by using very
simple background on ODEs and recurrences. The results, as they are presented
here, are also developed in [16].

Proposition 4. There exists a sequence of values nk tending to infinity and a con-
stant K > 0 such that H(nk) > Kn2k.

Proof. The construction of the ODE that gives this lower bound is a recurrent
process. Let X0 = (P0, Q0) be a given polynomial vector field of degree n0 with
c0 > 0 limit cycles. Since this number of limit cycles is finite, there exists a compact
set containing all of them. Therefore, doing a translation if necessary, we can assume
that all of them are in the first quadrant. By simplicity we continue calling X0 this
new translated vector field. From it, we construct a new vector field, by using the
(non-invertible) transformation

x = u2, y = v2.

The differential equation associated to X0 is ẋ = P0(x, y), ẏ = Q0(x, y) and it writes
in these new variables as

u̇ =
P0(u

2, v2)

2u
, v̇ =

Q0(u
2, v2)

2v
.

By introducing a new time s, defined as dt/ds = 2uv, we get that this ODE is
transformed into

u′ = v P0(u
2, v2), v′ = uQ0(u

2, v2).

Since each point lying in the first quadrant (x, y) has four preimages (±√
x,±√

y),
the new ODE has, at each quadrant, a diffeomorphic copy of the positive quadrant
of the vector field X0. Hence this new vector field, which we call X1, has degree
n1 = 2n0 + 1 and at least c1 = 4c0 limit cycles. By repeating this process, starting
now with X1 and so on, we get a sequence of vector fields Xk, with respective degrees
nk, having at least ck limit cycles, where

nk+1 = 2nk + 1, ck+1 = 4ck,
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see Figure 6.
Solving the above linear difference equation we get that

nk = 2k(n0 + 1)− 1, ck = 4kc0. (6)

Hence, since

2k =
nk + 1

n0 + 1
and 4k =

ck
c0
,

we obtain that
ck
c0

=

(
nk + 1

n0 + 1

)2

>
1

(n0 + 1)2
n2k.

Consequently,

H(n) >
c0

(n0 + 1)2
n2 and n = 2k(n0 + 1)− 1, k ∈ N,

as we wanted to prove.20 Armengol Gasull i Embid

X0 X1 X2

Figura 7: Dos passos del procés, començant amb camp X0 amb un únic

cicle ĺımit. Els camps X1 i X2 tenen quatre i setze cicles ĺımit, respectiva-

ment.

Les dues equacions en diferències anteriors són lineals i es poden resoldre exac-
tament. Obtenim

nk = 2k(n0 + 1)− 1, ck = 4kc0. (16)

Per tant, com que

2k =
nk + 1

n0 + 1
i 4k =

ck
c0
,

tenim que

ck
c0

=

(
nk + 1

n0 + 1

)2

>
1

(n0 + 1)2
n2
k.

En conseqüència,

H(n) >
c0

(n0 + 1)2
n2 per n = 2k(n0 + 1)− 1, k ∈ N,

com voĺıem demostrar. ✷

Observeu que la mateixa prova de la proposició ja fa pensar que la constant
K pot ser escollida de moltes maneres. Per exemple, com a camp X0 podem triar
l’exemple trivial de camp cúbic que apareix a molts llibres, i que en coordenades
polars s’escriu com

ṙ = r(1 − r2), θ̇ = 1.

És clar que només té un cicle ĺımit, r = 1. Aleshores c0 = 1 i n0 = 3. Per tant,
K = 1/16 i nk = 2k+2−1. Per altra banda, si triem el sistema quadràtic que permet
veure que H(2) ≥ 4, aleshores c0 = 4 i n0 = 2. Usant aquesta llavor, K = 4/9 i
nk = 2k3− 1. Se sap que H(3) ≥ 11, H(4) ≥ 20, H(5) ≥ 28, H(6) ≥ 35, vegeu [28].
Usant els respectius camps com a llavors s’obtenen valors de K, 11/16, 4/5, 7/9,
5/7, respectivament. La millor K obtinguda per aquest mètode i amb aquestes
llavors és 4/5.

La prova de que H(n) ≥ K n2 log(n) donada a [9] té també en compte els cicles
ĺımit que poden sorgir en un entorn dels eixos uv = 0 quan es fa el procés descrit
a la prova de la proposició anterior. De fet, es pot veure fàcilment que l’ED (15)
presenta diversos centres sobre els eixos. Els nous cicles ĺımit apareixen fent una

Figure 6. Two steps of the construction of the vector fields Xk, starting from a vector
field X0 with a unique limit cycle (c0 = 1, n0 = 3).

Notice that the proof of Proposition 4 shows that the constant K depends on
the seed of the procedure. Let us give some examples:

1. Consider X0 to be the trivial system of ODEs with one limit cycle that, in
polar coordinates, writes as

ṙ = r(1− r2), θ̇ = 1.

Clearly, the limit cycle is r = 1 and, thus, c0 = 1 and n0 = 3. Hence, K = 1/16
and nk = 2k+2 − 1.

2. ConsiderX0 to be any quadratic system that reveals the lower boundH(2) ≥ 4.
Then, c0 = 4 and n0 = 2 and, therefore, we get K = 4/9 and nk = 2k · 3− 1.
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n 3 4 5 6 7 8 9 10

hn 13 28 37 53 74 96 120 142

K 13/16 28/25 37/36 53/49 37/32 32/27 6/5 142/121

Table 5. Lower bounds hn of H(n) and the corresponding values of K, for
n ∈ {3, . . . , 10}.

3. Consider X0 to be a system attaining any of the best lower bounds hn of H(n)
known in the literature, for n ∈ {3, . . . , 10}, see [22–24, 26, 28, 34, 40]. In the
third row of Table 5, we get the values of K obtained by this procedure. We
remark that the highest K value obtained is 6/5.

We notice that better bounds can be obtained by using finer arguments. Indeed,
it is known that H(n) ≥ Ln2 log(n), which is currently the best general result on
by lower bounds for H(n), see again [9] or [1, 26, 27]. In fact, our proof is totally
inspired by that of [9], where the authors find additional limit cycles at each step
that appear by perturbing the centers created by the method on the axes uv = 0.
They obtain that, instead of (6), it holds that

nk+1 = 2nk + 1, ck+1 = 4ck + (2k − 2)2 + (2k − 1)2.

By studying these new difference equations they get the improved lower bounds of
type Ln2 log(n).

6 Maximum number of centers

In this section, following [17], we collect some known results about the maximum
number of centers of planar polynomial systems of degree n and we propose an open
problem.

The classification of centers for polynomial differential systems started with the
quadratic ones with the works of Dulac, Kapteyn at the beginning of the 20th
century. It continued with the works of Bautin [4] during the 50’s and Sibirskii [36]
in the 60’s about the cubic systems with homogeneous nonlinearities, including also
the study of the cyclicity of the centers.

Proposition 5. Let Cn be the maximum number of centers of polynomial differential
systems (1) of degree n. Then C1 = 1 and for n ≥ 2 it holds that

⌊n2 + 1

2

⌋
≤ Cn ≤ n2 + n

2
− 1.

Proof. It is clear that C1 = 1. Observe that, using Bezout’s theorem, a planar
polynomial differential system of degree n > 0, with finitely many equilibrium points,
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has at most n2 equilibrium points. Moreover, at most (n2 + n)/2 can have index
+1, see for instance [12,25].

Therefore, since all centers have index +1, it holds that Cn ≤ (n2 + n)/2. The
case with infinitely many critical points follows similarly and has a smaller upper
bound.

We can refine this upper bound by using the beautiful Euler–Jacobi formula,
which asserts, for the planar case, that if a polynomial system P (x, y) = 0,
Q(x, y) = 0, with P and Q having degrees n and m, respectively, has exactly nm
solutions (hence all them are finite and simple), then

∑

{(u,v) :P (u,v)=Q(u,v)=0}

R(u, v)

det(D(P,Q))(u, v)
= 0,

for any polynomial R(x, y) of degree smaller than n +m − 2, see for instance [20].
Here, D(P,Q) denotes the differential of the map (P,Q). As consequence of the
Euler–Jacobi formula, one obtains that, for n ≥ 2, if all points with index +1 lie on
a single algebraic curve, then the curve must have degree strictly greater than n−1,
see [10]. Having into account that all centers lie on the algebraic curve div(P,Q) = 0,
which has at most degree n− 1, we get that Cn ≤ (n2 + n)/2− 1.

On the other hand, in [11] it is also proved that planar polynomial Hamilto-
nian differential systems of degree n have at most ⌊(n2 + 1)/2⌋ centers and, hence,
Cn ≥ ⌊(n2 + 1)/2⌋. Moreover, this upper bound is attained: consider, for instance,

ẋ = F (y), ẏ = −F (x), with F (u) =
n∏

j=1

(u− j);

for these systems, centers and saddles are placed like white and black squares on a
n× n chessboard. This concludes the proof.

From Proposition 5, then, we know that C2 = 2, C3 = 5, and 8 ≤ C4 ≤ 9.
Therefore, it is natural to consider the following open problem:

Determine the maximum number of centers, Cn, for planar polynomial
differential systems of degree n ≥ 4.

Once the number Cn is obtained, it is also interesting to know the different
possible phase portraits that systems having these maximal number of centers can
have, see for instance [6], where the Hamiltonian case when n = 3 is studied. One
of the reasons is that perturbations of these systems are good candidates to have
different configurations of limit cycles.

We end this section with some comments for another family, the planar polyno-
mial holomorphic systems of degree n, for which the full classification of the different
phase portraits with the maximum number of centers is known. Recall that these
systems are the ones that in complex coordinates z = x + iy write as ż = pn(z),
being pn a complex polynomial of degree n. For them, the maximum number of
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centers is n and, in this case, also the maximum number N(n) of different topolog-
ical phase portraits on the Poincaré disc can be computed, see [2, 35]. It turns out
that N(n) coincides with the number of labeled projective planar trees with n nodes
and is given by the sequence A006082 in the OEIS’ web page [39]. In particular,
N(4) = 2, N(5) = 3 and N(6) = 6, see the 6 different classes of phase portraits for
n = 6 in Figure 7. In these phase portraits each point is a center and the connected
component where this point lies is filled of periodic orbits surrounding it.

in the following order: Figure 2(a) is fulfilled by equation (4), Figure 2(b) by equation (5)

and Figure 2(c) by equation (6).

For n ¼ 6, there are six possible topological configuration of separatrices. See Figure 3.

Using analogous symmetry arguments, as before, and Theorem 2.1, we get the three

differential equations that fulfill the phase portraits plotted in Figure 3(a)–(c),

_z ¼ izðz2 1Þðz2 2Þðz2 4Þðzþ 4Þðz2 8Þ; ð7Þ

_z ¼ zðz5 2 i=5Þ; ð8Þ

_z ¼ iðz2
ffiffiffi
6

p
Þðzþ

ffiffiffi
6

p
Þðz2 z3Þðz2 �z3Þðzþ z3Þðzþ �z3Þ; ð9Þ

with z3 ¼ 3 þ i, respectively.

Observe that equations (7) and (9) are invariant under the change of variables ðz; tÞ!
ð�z;2tÞ and then their phase portraits are symmetric with respect to the axis ImðzÞ ¼ 0.

Moreover, equation (9) is also invariant under ðz; tÞ! ð2�z;2tÞ: Because of that, together

(a) (b) (c)

Figure 2. The three topologically different phase portraits for n ¼ 5.

Figure 3. The six topologically different phase portraits for n ¼ 6.
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Figure 7. The six different phase portraits with six centers for holomorphic vector
fields of degree 6.
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